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Abstract

SAT lies at the core of Property Directed Reachability (PDR),
a search paradigm for solving a range of transition system
problems without having to reason about huge unwieldy for-
mulae. We consider the application of PDR to the AI plan-
ning problem. We develop and extensively evaluate two new
strategies for using incremental SAT in parallel computing
environments to accelerate classical planning via PDR. Start-
ing from the planning problem’s unique initial state, here
PDR proceeds by using a SAT solver to iteratively evaluate
whether or not a problem state can be progressed towards the
goal. If a state can be progressed, then the successor is regis-
tered for future evaluation. Otherwise, the reason for the pro-
gression failing is inferred using SAT during the evaluation,
and that derived reason then constrains future evaluations.
Our first parallel strategy, called PS-PDR, employs a sin-
gle centrally managed priority queue of pending state evalu-
ations, and performs state evaluations in parallel using a pool
of incremental SAT solvers. Our second parallel strategy im-
proves the scalability and efficiency of PDR-based planning
by exploiting the compositional structure exhibited in some
problems. That approach, called PD-PDR, solves subprob-
lems using independent PDR processes, and when available,
subplans are linked to form a concrete plan. We experimen-
tally demonstrate that both parallel approaches can achieve
substantial runtime gains in a wide range of SAT and UNSAT
planning benchmarks.

Introduction
We study the classical planning problem. This is the prob-
lem of determining whether a finite discrete deterministic
transition system can, via a sequence of actions, transition
from an initial state to a state satisfying a goal condition.
The system is represented succinctly in a formalism such
as STRIPS (Fikes and Nilsson 1971) or PDDL (McDermott
et al. 1998). A range of solution procedures for this problem
have been proposed which are based on the Boolean sat-
isfiability problem (SAT) (Kautz and Selman 1992, 1996;
Biere et al. 1999). They proceed by posting a series of
SAT queries, each corresponding to a horizon limited ver-
sion of the planning problem. Recent developments have
improved runtime performance using specific tailoring of
decision procedures (Rintanen 2012), careful allocation of
(parallel) computing resources to queries (Rintanen 2004;
Streeter and Smith 2007), and by adopting novel innova-

tions (e.g., incrementality) in SAT solving (Gocht and Ba-
lyo 2017). In practice these approaches face two core diffi-
culties: (i) it’s difficult to prove that no plan exists,1 and (ii)
if the smallest plan is very large they can require a lot of
memory, because the solution procedure must represent an
unrolling of the transition system model over a large number
of steps.

PDR is an approach devised to address these difficul-
ties (Bradley 2011; Eén, Mishchenko, and Brayton 2011).
It was originally devised for model checking safety proper-
ties in hardware verification and has since been extended to
a range of other related settings, including planning (Suda
2014). PDR operates by iteratively refining reachability
information—a formula describing an overapproximation of
the set of states that are N steps away from the goal. This
knowledge lies at the heart of PDR, and is used to determine
states which may be able to reach the goal. These states are
iteratively progressed towards the goal, guided by the reach-
ability information. Either a successor state is found which
is closer to the goal, or a generalization of the state is used
as a nogood to refine the reachability information. If a se-
quence of states from the initial state to a state satisfying
the goal condition is found, a plan can be extracted from the
corresponding transitions. Additionally, if no plan exists, the
reachability knowledge can be used to determine this. PDR
has been recognised as being highly amenable to parallel
computing, there exists portfolio variations for model check-
ing of hardware and software systems (Chaki and Karimi
2016; Marescotti et al. 2017).

In this paper we develop and evaluate two new SAT-based
parallel PDR algorithms for classical planning. The first,
called PS-PDR, recognises that in planning problems PDR
accumulates a very large backlog of states to be progressed,
with each progression achieved via a separate query to a SAT
solver. Using a centrally managed pool of incremental SAT
solvers, we develop an approach that progresses states and,
where applicable, derives failure reasons in parallel. SAT
queries are conceptualised as units of work, and a central
orchestrator schedules that work to be completed in a way
that is greedy w.r.t. the planning goal. Our second algorithm,

1Given a (tight) completeness threshold the classical bounded
model checking approach is complete (Jason Baumgartner and
Abraham; Kroening et al. 2011; Abdulaziz and Berger 2021).



called PD-PDR, proceeds in a similar manner to portfolio
approaches from model checking, though employs a prob-
lem compositionality framework from the planning litera-
ture that is native to our setting, and thus departs from exist-
ing PDR portfolios considerably in terms of the composition
of the portfolio. Using dependency analysis, we decompose
the concrete problem into a series of subproblems so that a
concrete plan corresponds to the concatenation of subprob-
lem plans, and so that each subproblem can be solved inde-
pendently in parallel. PD-PDR is not a complete procedure,
though in planning benchmarks that are susceptible to com-
positional analysis it is extremely successful. We performed
a detailed empirical analysis on both satisfiable and unsat-
isfiable planning benchmarks, with our analysis focusing on
interesting problems, which take at least one solver ten sec-
onds to solve. Comparing to a “virtual best” serial baseline
that includes PDRPLAN (Suda 2014), using 48 cores our im-
plementation of PD-PDR has a maximal speedup factor ex-
ceeding 12.7 in instance 97-1 from the Logistics benchmark
problem set (∼ 141 seconds v.s. > 30 minutes). It exhibits
reliable runtime performance increases across all evaluated
domains which feature a compositional structure. Baselining
as above, PS-PDR using 48 cores has a maximum speedup
factor exceeding 984 (∼ 1.8 seconds v.s. > 30 minutes), in
Bottleneck benchmark problem number 21.

Background and Notation
Classical Planning
Assuming familiarity with propositional logic we describe
the classical planning problem. A problem is given by a tu-
ple 〈X,A, I,G〉, where X is a set of Boolean-valued state-
characterising propositions, A is a set of actions, I is the ini-
tial state, and G is the goal condition. A full problem state
can be described by a cube, a conjunctive clause, and specif-
ically a conjunction containing exactly one literal for each
element in X . A full state is a representation of a total inter-
pretation over X – i.e., a truth assignment to X . The concept
of a partial state is also useful, which is a cube over a sub-
set of the propositions in X , or intuitively, a representation
of a partial assignment over X . The initial state I is a full
state and the goal condition G is a partial state. Each action
a ∈ A is specified by a precondition cube pre(a) and an
effect cube eff (a). We assume these cubes are consistent—
i.e., if literal ` appears in such a cube, then we cannot have
¬` also in that cube. An action a is applicable to a state s
iff s ` pre(a). The state s′ = succ(s, a) resulting from exe-
cuting a at s satisfies: s′ ` eff (a) and for every proposition
f ∈ X absent from eff (a) we have that for all `f ∈ {f,¬f}
if s ` `f then s′ ` `f . An action a conflicts with another
a′ if 6` eff (a) ∧ eff (a′). Those two actions interfere if either
6` eff (a)∧pre(a′) or 6` eff (a′)∧pre(a). We say that sn is in-
stantaneously reachable from s, written reachable∀(s, sn),
if there exists a sequence [s0, a0.., sn−1, an−1, sn] satisfy-
ing: (i) ∀i ∈ {1, .., n}, si = succ(si−1, an−1), and (ii) for all
pairs of actions ai and aj we have that these neither conflict
nor interfere. In other words, the set of actions {a0, .., an−1}
can be executed in any order at s0, and the resulting state is
sn. Moreover, we can imagine executing that set of actions

instantaneously in parallel at s0 to reach sn, as per the ∀-
step semantics (Rintanen, Heljanko, and Niemelä 2006). We
restrict our attention to ∀-step semantics in this paper. We
call a state s′ a successor of s iff reachable∀(s, s′) holds.
A ∀-step execution of length n between states s0 and sn is
a sequence of states s0, s1, .., sn where successive states si
and si+1 satisfy reachable∀(si, si+1). A planning problem
solution is a ∀-step execution from I to a state s satisfying
s ` G. Such a solution is called a plan.

We will find it convenient to refer to abstract planning
problems and problem objects, defined by restrictions
to a subset Y ⊆ X of problem propositions. For a set
of actions A and a set of propositions Y ⊆ X , the
restriction A↓Y is the subset of actions in A that can
be described completely if we restrict ourselves to us-
ing the symbols from Y only. Writing Σ(f) for the set
of all propositions mentioned in a formula f , we have:

A↓Y = {a ∈ A|Σ(pre(a)) ∪ Σ(eff (a)) ⊆ Y } .
In the case of a state s and a set of propositions Y , s↓Y
is the cube restricted to propositions in Y . For example,
(¬a ∧ ¬b ∧ c)↓{a, c} = (¬a ∧ c)

We here assume familiarity with PDR, a sound and com-
plete approach for solving the planning problem (Bradley
2011; Suda 2014).

Problem Decomposition for Planning
We develop a new portfolio-style of PDR algorithm for plan-
ning that first decomposes a concrete problem into a se-
quence of abstract subproblems. A satisfiable concrete plan-
ning problem is solved in relatively little time using PDR
searches running independently in parallel. The notation and
background required for the elicitation of subproblems is de-
scribed here. We write eff +(a) for the cube of propositions
that occur positively in eff(a), and eff−(a) for the negative
effects. A proposition x might only appear in one sign in
the effects of problem actions, either uniformly positively,
or uniformly negatively. Let X+ ≡ {x|a ∈ A, x ∈ eff +(a)}
be the set of propositions that occur positively, and X− ≡
{x|a ∈ A, x ∈ eff−(a)} the set that occurs negatively. The
set of propositions that appear only with one sign in the
action effect descriptions is then X± ≡ X\(X+ ∩ X−).
The problem dependency graph, sometimes called a causal
graph, was first described by (Knoblock 1994; Williams and
Nayak 1997). Departing only slightly from the original con-
ception, we proceed as follows.

Definition 1 (Dependency Graph). A dependency graph for
a planning problem 〈X,A, I,G〉 is a directed graph (V,E)
with a vertex for each proposition in X , and an edge (v, v′)
for each pair of vertices where: (i) There exists an action a
where v, v′ ∈ Σ(eff(a)) and v′ 6∈ X±, or (ii) There exists
an action a such that v ∈ Σ(eff(a)) and v′ ∈ Σ(pre(a)).

For a graph (V,E) with v, v′ ∈ V , we write v
(V,E)
 v′ to

signify that there is a path from v to v′ in (V,E). We also
define the Problem Specific Dependency Graph (PSDG),
a variant of the Dependency Graph which only includes
propositions relevant to achieving the goal.

Definition 2 (Problem Specific Dependency Graph). Given



a dependency graph (V,E) for problem 〈X,A, I,G〉, its
problem specific dependency graph is obtained by remov-
ing all vertices (and thereby their adjacent edges) that are

not in the set {v′|∃v ∈ Σ(G), v
(V,E)
 v′}.

Definition 3 (Strongly Connected Component (SCC)). An
SCC of a directed graph is a subgraph in which there is a
directed path from each vertex to every other vertex, and
every vertex reachable from a vertex in the subgraph is also
in the subgraph – i.e., SCCs are maximal.
Definition 4 (SCC Graph). Given a dependency graph
or PSDG (V,E), its corresponding SCC Graph is a pair
(P,E) where: (i) P is the set of SCCs of (V,E), and (ii) E
contains an edge (p,p′) iff there is an edge (v, v′) ∈ E such
that v appears in p and v′ appears in p′. We write V (p) to
denote the subset of V that appear in the subgraph p.

Parallel State PDR
We now describe our first major contribution, a variant of
PDR, Parallel State PDR (PS-PDR). PS-PDR is a sound
and complete algorithm for solving the planning problem.
PS-PDR is identical to PDR in most ways, with the key dif-
ference that instead of serially taking obligations from the
queue and evaluating them as PDR does, PS-PDR evalu-
ates multiple obligations from one centrally managed queue
independently in parallel.

Both PDR and PS-PDR are directed SAT-based ap-
proaches, where each SAT variable directly corresponds to
the execution of an action or polarity of a proposition. As
such, if the problem has a solution it is directly available
from satisfying valuations. The algorithms proceed by main-
taining and iteratively refining overapproximations of reach-
ability information, called layer information about the sys-
tem. The information at each layer is represented as a CNF
formula. A layer formula Li is associated with discrete step
i, and this is iteratively refined as PDR/PS-PDR proceeds.
Such formulae are developed to maintain the invariant that:
for every state s such that s 6` Li there is no ∀-step ex-
ecution of length i or less from s to a state satisfying G.
Initially, L0 = G and all other layers are the vacuously sat-
isfied empty CNF formula containing no clauses – i.e., the
loosest possible overapproximation. A “queue”, Q, is main-
tained with each element a tuple 〈s, i〉 known as an obliga-
tion, where s is a state and i is a layer index. Each obliga-
tion 〈s, i〉 ∈ Q represents a pending query of whether s can
reach the goal in i steps. In case the problem is not trivially
solvable Q is set up to initially contain a single obligation
〈I, 1〉—i.e., representing a query of whether the initial state
can reach the goal in one step.

Our exposition of PS-PDR makes use of a function
has succ(s,Li−1), which returns True iff the state s has
a successor state s′ such that s′ ` Li−1. When comput-
ing has succ(s,Li−1) on a partial or full state s, a query
is made to a SAT solver on a specific one-step formula.
That formula corresponds to the cube s, conjoined with the
layer formula Li−1, and further conjoined with a formula
describing the ∀-step semantics transition system model of
the problem – i.e., the available actions, their preconditions,
and effects. The formula is satisfiable iff a successor state

exists, and the query is solved in our implementations us-
ing an incremental systematic SAT-solver. The encoding is
direct, so if a solution does exist then a successor state is
given by the satisfying valuation to the query formula. In
that query, s is represented as a list of assumptions, thus if
the formula is unsatisfiable, then the used assumptions from
the incremental solver correspond to a partial state u such
that ¬has succ(u,Li−1) and s ` u.

We define the function get succ(s,Li−1) on a partial
or full state s and formula Li−1, which returns a tuple
〈exists, s′, u〉. Computing this function first involves call-
ing has succ(s,Li−1). If this is True, the elements of
the return tuple are: exists = True, u = NONE,
and s′ is a successor of s which satisfies Li−1 ex-
tracted from the satisfying assignment from the SAT-solver
used to compute has succ(s,Li−1). Otherwise, exists =
False, s = NONE, and u is a partial state such that
¬has succ(u,Li−1) corresponding to the used assump-
tions from the SAT-solver. In Alg. 2, we write Π.has succ,
Π.get succ and Π.compute reason to denote that the tran-
sition system used corresponds to problem Π.

Within PDR/PS-PDR when an attempt to find a succes-
sor to a state fails—i.e when has succ(s,Li−1) is false—a
reason for failure is derived and added to the layer infor-
mation at step i. This reason, r, is a partial state such that
s ` r and ¬has succ(r,Li−1). The reason r is added to Li,
by conjoining one disjunctive clause prohibiting states con-
sistent with r, so that for any state y where y ` r we have
y 6` Li for the updated Li. The state s is itself a reason,
but adding ¬s to layer information is not effective. By find-
ing a small reason with fewer literals, the added constraint
becomes stronger. In practice, finding reasons with few lit-
erals is the most time-consuming operation of both PDR and
PS-PDR, but is important for efficiency (Suda 2014).

We formalise reason finding via the function
compute reason, which is invoked in PDR/PS-PDR
on an obligation 〈s, i〉 and the layer information L. It is only
defined when ¬has succ(s,Li−1). Pseudocode for this is
presented in Algorithm 1, in which we use the notation ` ∈ c
to signify that literal ` appears in clause c. Starting with
the maximal reason s, the reason is iteratively strengthened
by excluding literals not necessary for unsatisfiability. This
involves invoking a SAT solver multiple times to evaluate
has succ, each time taking the used assumptions as the
revised reason candidate.

With these concepts at hand we now describe PS-PDR.
Rather than serially taking obligations from the queue and
evaluating them as PDR does, PS-PDR evaluates multi-
ple obligations from one centrally managed queue indepen-
dently in parallel. This involves running n > 1 processes in
a distributed computing environment, with one orchestrator
and M = n − 1 workers. Each worker is given a unique
worker ID from {1, ..,M}. All processes keep a local copy
of the layer information. Clauses are added to the layer in-
formation held by the orchestrator, then disseminated on de-
mand and in increments to workers as they receive work re-
quests. The orchestrator process manages a single queue, a
central repository of layer information, and checks for con-
vergence to test if no plan exists. The orchestrator executes



Input: A planning problem Π = 〈X,A, I,G〉, an
obligation 〈s, i〉, layer formula L

Output: A reason
1 r ← s
2 for l ∈ s do
3 if l ∈ r then
4 r′ ←

∧
l′∈r,l′ 6=l

l′

5 〈exists, s′, u〉 ← Π.get succ(r,Li−1)
6 if ¬exists then r ← u
7 end
8 end
9 return r

Algorithm 1: compute reason

Alg. 3, and each worker executes Alg. 2.
The orchestrator communicates updates about layer in-

formation and obligations to the workers, and the workers
communicate back: (i) reasons for progression failure, or (ii)
successor states in cases of successful progressions.

The orchestrator and workers communicate via MPI,
using the following functions (Clarke, Glendinning, and
Hempel 1994; Gabriel et al. 2004). When the orches-
trator calls send to worker with a tuple and a worker
ID, that tuple is sent to the corresponding worker, and
is retrieved by the worker calling get obligation. Ad-
ditionally, send to worker is documented as taking a
layer formula L as a parameter. This layer information is
available to the worker, and stored locally as Llocal copy .
The layer information of the workers is only synchro-
nized with the orchestrator when the get obligation
function is called. The orchestrator does not send the
entire layer formulae, but only the incremental differ-
ence since the last communication. When a worker calls
send [success/failure] to orchestrator, the provided
tuple is stored in a buffer, which is accessed by the orchestra-
tor calling get [successes/failures] from workers, af-
ter which, the buffer is emptied. Function workers waiting
returns the set of worker IDs of processing currently wait-
ing for work having invoked get obligation. Function
get obligation is a synchronous call, so the worker
blocks until it receives work. Otherwise, send to worker,
send [success/failure] to orchestrator,
get [successes/failures] from workers, and
workers waiting are all asynchronous.

The orchestrator proceeds by first checking if the initial
state satisfies the goal condition (Alg. 3, line 2). After this
a loop is started over k ∈ [1, 2, 3, ...] (Alg. 3, line 3). When
the orchestrator comes to increment k without having found
a plan, I 6` Lk and therefore there is no plan with k or
fewer steps. At the start of each iteration, Lk is the vacu-
ously satisfiable empty CNF formula and 〈I, k〉 is added to
Q (Alg. 3, line 4). The algorithm proceeds by processing
obligations from the queue, adding new reachable succes-
sors, and adding reasons to layer information.

When elements from the queue are popped off as 〈s, i〉,
elements with minimal i are popped first, breaking ties

favouring elements added most recently—i.e, LIFO (Alg. 3,
line 8). If the orchestrator receives a tuple 〈s′, s, i〉 from
get successes from workers() such that i − 1 = 0, then
s′ ` L0, and therefore s′ is a goal state as s′ ` G. As all
states mentioned in the queue are either the initial state, or a
state that can be reached by the initial state, and s′ is a suc-
cessor to a state which was in the queue, then s′ can also be
reached from the initial state. Alg. 3, line 14 is able to return
True, because a goal state reachable from I is found and the
planning problem is therefore solved positively.

Whenever a reason r is added to the layer information
at Li, every obligation 〈s, i〉 in Q such that s ` r is re-
moved from Q. Additionally, while not necessary for cor-
rectness, when an obligation 〈s, i〉 such that i < k is sent
to a worker to be processed, and the worker returns back
that ¬hassucc(s,Li−1), the obligation 〈s, i + 1〉 is added
to the queue (Alg. 3, line 18). This is known as obligation
rescheduling (Suda 2014).

When wrapping up an iteration at k PS-PDR can option-
ally perform clause pushing. In this part of the algorithm
pseudocode—lines 21-35 Algorithm 3—we write c ∈ f to
signify that clause c appears in CNF formula f . This is an
important processing element for solving planning problems
efficiently, and is performed by all the systems we evaluated.
This involves considering, for each i ∈ {1, .., k + 1}, each
reason in Li−1 which is not in Li. Then using it to constrain
Li, if it is a valid constraint.

For each step i in {1, .., k + 1}, there is a check to see if
Li−1 ≡ Li (Alg. 3, line 34). If the equivalence holds then
the goal will never be reachable from the initial state, so no
plan exists, so the algorithm returns False. Note here that
in practice, the check for logical equivalence is a syntactic
check—i.e. the check that every clause in Li−1 is in Li and
vice versa.

Input: A planning problem Π = 〈X,A, I,G〉
1 Loop
2 〈clause pushing,Llocal copy, 〈s, i〉〉 ←

get obligation()

3 〈exists, s′, u〉 ← Π.get succ(s,Llocal copy
i−1 )

4 if exists then
5 if ¬clause pushing then

send success to orchestrator(〈s′, s, i〉)
6 else
7 if clause pushing then
8 send failure to orchestrator(〈NONE, s, i〉)
9 else

10 r ←
Π.compute reason(〈u, i〉,Llocal copy)

11 send failure to orchestrator(〈r, s, i〉)
12 end
13 end
14 EndLoop

Algorithm 2: PS-PDR Worker



1 Q← {},L0 ← G, for j > 0 : Lj ← True
2 if I ` L0 then return True
3 for k ∈ [1, 2, 3, ...] do
4 Q← {〈I, k〉}
5 while Q 6= {}, or

workers waiting() 6= {1, ..,M} do
6 foreach w ∈ workers waiting() do
7 if Q 6= {} then
8 〈s, i〉 ← pop most recently added

obligation from Q with minimal i.
9 send to worker(〈False,L, 〈s, i〉〉, w)

10 end
11 end
12 foreach 〈s′, s, i〉 ∈

get successes from workers() do
13 Q← Q ∪ {〈s, i〉, 〈s′, i− 1〉}
14 if i− 1 = 0 then return True
15 end
16 foreach

〈r, s, i〉 ∈ get failures from workers()
do

17 for j ∈ {0, .., i} do Lj ← Lj ∧ ¬r
18 if i < k then Q← Q ∪ {〈s, i + 1〉} /*

Obligation Rescheduling */
19 end
20 end
21 for i ∈ {1, .., k + 1} do /* Clause Pushing */
22 CP← {〈¬c, i〉 |c ∈ Li−1, c 6∈ Li}
23 while CP 6= {} or

workers waiting() 6= {1, ..,M} do
24 foreach w ∈ workers waiting() do
25 if CP 6= {} then
26 〈¬c, i〉 ← pop obligation from

CP
27 send to worker(〈True,L, 〈¬c, i〉〉, w)
28 end
29 end
30 foreach 〈 ,¬c, 〉 ∈

get failures from workers() do
31 Li ← Li ∧ c
32 end
33 end
34 if Li−1 ≡ Li then return False
35 end
36 end

Algorithm 3: PS-PDR Orchestrator

Parallel Decomposition PDR
Our second major contribution is the Parallel Decomposi-
tional PDR (PD-PDR) algorithm, a sound but not complete
parallel PDR algorithm for the planning problem. It involves
performing dependency analysis on the problem, to find and
represent its different subproblems. These subproblems are
then solved for, independently in parallel, afterwards, the re-
sults are combined by concatenating subproblem plans to
form a concrete plan. The constraints associated with sub-

problems are determined prior to any plan search. Thus, in-
stead of planning for each subproblem serially, one after the
other, they can all be planned for independently in parallel.

The algorithm involves creating a list of planning prob-
lems from the original problem. We will refer to list ele-
ments as subproblems, and the original planning problem
as the concrete problem. This is done by creating various
subsets of propositions, and restricting concrete problem el-
ements to them.

Intuitively, these subproblems are generated so that the
initial state of one subproblem roughly corresponds to the
goal condition of the previous subproblem, with the first
subproblem’s initial state being that of the concrete prob-
lem, and the goal condition of the final subproblem being
that of the concrete problem. Each subproblem considers a
subset of the propositions, then attempts to achieve part of
the concrete goal condition. Additionally, the subproblems
are constrained so that the propositions from the initial state
mentioned in later subproblems must be returned to their
original polarity in the goal; so that subproblem plans can
be concatenated. For propositions that can only change po-
larity once, it is impossible to achieve such a subproblem
goal if a sequenced action changes the polarity. In this case,
the above constraint is not imposed, allowing such a propo-
sition to have a new parity in the subproblem goal, we call
such propositions exclusions. Potentially, multiple subprob-
lem plans could change the same proposition, in which case
the concatenation of subplans may not produce a valid con-
crete plan. PD-PDR is sound if a potential plan is found, it
is verified before PD-PDR declares a plan exists. PD-PDR
is not complete, as goals from multiple subproblems may
need to be achieved together with a single use resource. For
a problem where a plan exists, it is not known beforehand
whether PD-PDR will be able to find such a plan. In prac-
tice however, we find it quite effective.

For a given concrete problem 〈X,A, I,G〉, the list of sub-
problems of interest is obtained as follows:
• Let Γ = (P,E) be the SCC Graph of the PSDG (V,E)

of the concrete problem.
• Let ∆G be the list of SCCs in P that contain a goal propo-

sition. If there is a path from p1 to p2 in Γ then p2 must
appear after p1 in ∆G.2

• Let pG be an element in ∆G, then:

F (pG) ≡ {f |p′ ∈ P,pG
Γ
 p′, f ∈ V (p′)} ∪ V (pG)

Intuitively, F (pG) contains most of the concrete problem
propositions that are required to plan for the goals in pG.
To get the propositions “missing” from F (pG) to plan for
the goal in pG, we require the following exclusions:

Ex(pG) ≡ {x|x ∈ X±, v ∈ F (pG), a ∈ A,
x ∈ Σ(eff (a)), v ∈ Σ(eff (a))}

Intuitively, these exclusions are additional propositions—
perhaps useful for achieving a subgoal—that can change
their polarity at most once.
2Note, when the ordering is underconstrained and multiple or-

derings are possible, in practice we break ties using a lexicographic
ordering over subproblems.



• Let idx(p) be the index in ∆G at which the subproblem p
occurs. We then define Φ(p) as:

Φ(p) ≡ {f |p′ ∈ ∆G, j = idx(p′), j > idx(p), f ∈ F (p′)}

Intuitively, Φ(p) is the union of F (p′) for each p′ ∈ ∆G

that occurs after p in ∆G.
• A list of subproblems is created. For each p ∈ ∆G, where
X(pG) = F (pG)∪Ex(pG), there is a corresponding sub-
problem:

〈X(pG), A↓X(pG), I↓X(pG), G↓V (pG) ∧ I↓Φ(p)〉

Each of the subproblems in this list is then solved indepen-
dently in parallel with serial PDR. If any subproblem does
not have a solution, then the algorithm returns unknown. If
a plan is found for each subproblem, these plans are con-
catenated together in the same order as their corresponding
subproblems appear in the subproblem list. This potential
plan is verified. If it is a valid plan, the algorithm returns
True, otherwise it returns Unknown.

Experiments
We implemented PS-PDR and PD-PDR building from the
PDDL parser from the SAT-based planning system MADA-
GASCAR (Rintanen 2012).3 We benefit from the preprocess-
ing of that tool, including problem grounding, invariants—
i.e., mutex relationships between state propositions—and
detection of unsatisfiability in case that is trivial. We imple-
mented a comparison serial PDR solver we call PDR-S. We
also baseline our implementations by comparing them with
PDRPLAN. LINGELING (Biere 2010) is used as the incre-
mental SAT solver in all our implementations. In the case of
PDR-S, the SAT solvers are maintained on a single process,
whereas in PS-PDR, workers each maintain their own set
of SAT solvers and communicate with the orchestrator us-
ing MPI (Clarke, Glendinning, and Hempel 1994; Gabriel
et al. 2004). We performed preliminary experiments evaluat-
ing our various PDR algorithms with and without obligation
rescheduling. We found obligation rescheduling increased
the efficiency of the parallel and non-parallel algorithms,
aligning with the findings of (Suda 2014). Because of this,
all solvers evaluated here use obligation rescheduling. In the
case of PD-PDR we first perform the described decomposi-
tion and create a list of subproblems. Each of these subprob-
lems is then solved independently in parallel by PDR-S. If
planning is successful in all subproblems, these plans are
concatenated and the resulting concrete plan has its validity
tested using VAL (Howey, Long, and Fox 2004).

Existing parallel PDR approaches in different contexts
involve a portfolio of PDR processes each managing their
own queue, periodically posting learnt reasons to each
other (Bradley 2011; Marescotti et al. 2017; Chaki and
Karimi 2016). Each of these existing approaches do not use
obligation rescheduling. As these existing approaches can-
not parse benchmark planning problems, and to test this
portfolio approach with obligation rescheduling, the port-
folio approach was reimplemented. The implementation is

3Source code at: https://github.com/ANU-HPC/parallel-pdr

a variation of PS-PDR, where instead of the orchestrator
managing a single queue, a set of queues is managed, one for
each worker. Then when a worker requests/produces a state,
it is retrieved/added to its corresponding queue. Obligation
rescheduling is enabled. We refer to this implementation as
PDR Portfolio (PDR-P).

Each PS-PDR/PDR-P run uses 48 cores with one thread
per core, so there are 47 workers and one orchestrator. We
evaluate the performance of solvers on International Plan-
ning Competition (IPC) problems. We also evaluate on in-
stances of the OPTICAL-TELEGRAPHS and PHILOSOPHERS
domains created by the PDDL generator from (Fabre et al.
2010). In addition to standard “satisfiable” benchmarks, we
include “unsatisfiable” problems from the 2016 IPC Unsolv-
ability track.

All evaluations were performed on an Intel(R) Xeon(R)
Gold 6252 CPU with 187GBs Memory. Additionally, as
many instances from the unsolvability track timed out, if 5
successive instances of a domain timed out for a particular
solver, we report that all successive instances also timed out.
We label a planning domain decomposable if it is suscepti-
ble to the decompositions used in PD-PDR. As PD-PDR is
unable to prove a problem has no solution, we do not per-
form PD-PDR on problems from the unsolvability track.

All problem instances were run with a 30-minute
(1800s) timeout. We exclude reporting on the domains:
BAG-BARMAN, BAG-GRIPPER, OVER-TPP and SLIDING-
TILES from the unsolvability track as none of the variants
of PDR we evaluated were able to produce UNSAT proofs
in any instances from these—i.e all solvers timed out, were
unable to parse the problem or ran out of memory.

Table 1 shows the number of instances solved for each
domain (coverage), along with a speedup factor, shown as:
instances solved/speedup factor#ratios averaged. For results of
parallel solvers, the speedup factor is the geometric mean of
the runtime ratio between the fastest serial planner (out of
both PDRPLAN and PDR-S) and the parallel solver. In the
reporting of this factor we only consider problems where:
(i) both solvers completed successfully, and (ii) at least one
takes longer than ten seconds. #ratios averaged is the num-
ber of ratios averaged to calculate this factor. A speedup fac-
tor is also reported for PDR-S, with PDRPLAN being the
comparison solver. When there are no problems matching
this criteria, in place of a speedup factor ”-” is reported. The
best coverage for each domain is bolded. For the parallel
solvers, the best parallel speedup is bolded,

The first column reports the domain with the total num-
ber of problems and number of interesting problems, where
an instance is deemed interesting if at least one evaluated
solver exhibited a runtime of at least ten seconds. Column
Abbr. shows the domain abbreviations we have adopted for
later use in Figure 1. Column #CPUs reports the maximum
of the number of CPUs allocated to a PD-PDR problem.
Because the number of processes needed to perform PD-
PDR is sometimes greater than the number of cores avail-
able on the testing system, the parallel runtime is simu-
lated via a batch of serialised invocations, thus we report the
longest subproblem runtime plus parsing and decomposition
time. Domains that do not include a result for PD-PDR and



#CPUs were not decomposable.

Figure 1 records (in logscale) statistics of the distributions
of experimental runtimes, either by directly reporting run-
times as points, or summarizing the runtime distributions
using a box-and-whisker element. We restrict the distribu-
tions under consideration to interesting instances. Some of
the distribution elements are lower bounds, as we include
a timeout datapoint (1800 seconds) in case: (i) of a time-
out, (ii) the system exhausting memory prior to solving the
instance, or (iii) in the case PD-PDR is unable to find a
valid plan. When presented as a box and whisker plot, the
top and bottom of each plot shows the maximum and min-
imum runtimes. The top and bottom of each box shows the
75th and 25th percentile, and the line inside each box shows
the median. The plotted elements in Figure 1 order (left-
to-right) and colour the data for the solvers as follows. (i)
� PDRPLAN (ii) � PDR-S (iii) � PDR-P (iv) � PS-

PDR (v) � PD-PDR (only when decomposable) We plot a
gray bar in place of a distribution summary if that solver was
not able to parse problems from the indicated domain. The
timing data for the Unsolvability track instances are plotted
directly, as since many instances time out, box and whisker
plot would be heavily skewed and uninformative.

Figure 1: Per-domain runtime distribution summaries.
Above each indicated domain, from left to right, the run-
times are for solvers � PDRPLAN, � PDR-S, � PDR-P,
� PS-PDR, � PD-PDR.

Summarising our evaluation of the parallel solvers: We
find PD-PDR (when it is applicable) and PS-PDR to be the
fastest solvers. in 49 cases, PS-PDR/PDR-P exhausted the
memory of the host, no other solver did this. In only one oc-
casion, PD-PDR was not able to find a plan due to its incom-
pleteness, as opposed to a timeout or memory constraint—
subproblem plans were found, but the combination was in-
valid. This was in the ROVERS domain. For understanding
the parallel performance gains of PD-PDR, we note that
if we exclude PDRPLAN runtimes, and weigh all domains
equally, PD-PDR has a speedup factor of 4.4 over PDR-S.
Similarly, PS-PDR has a 2.9 speedup factor over PDR-S
for the Unsolvability domains, and 5.7 in the other domains.

Related Work
The first PDR algorithm was IC3, which stood for “Incre-
mental Construction of Inductive Clauses for Indubitable
Correctness” (Bradley 2011). The algorithm is a SAT-
based procedure for reasoning about problem safety with-
out explicitly unrolling the transition relation. IC3 fea-
tured in the 2010 Hardware Model Checking Competi-
tion (HWMCC’10), and Property Directed Reachability was
a phrase later coined in (Eén, Mishchenko, and Brayton
2011). A range of serial PDR procedures were subsequently
adapted, developed, and evaluated for planning(Suda 2014).
Of special interest here is PDRPLAN, a fast bespoke im-
plementation of PDR that takes advantage of the common
structure of many classical planning benchmarks—e.g., uni-
formly positive action preconditions—replacing all SAT in-
ference with specialised constraint processing procedures
that perform guaranteed polynomial time inference.

The question of how to use parallel computing to improve
the runtime of PDR is of interest in our setting. In the orig-
inal IC3 manuscript (Bradley 2011), the author, Bradley,
recognised the potential for accelerating PDR using paral-
lel computing. He introduced a portfolio scheme, using a
small set of IC3 processes that synchronise so that clause
pushing (Alg. 3, lines 21-35) can be performed by one se-
rial process, and problem safety (Alg. 3, line 34) detected by
that process where applicable. In this original work, search
diversity is enhanced using a nondeterministic SAT-solver
ZCHAFF (Vizel, Weissenbacher, and Malik 2015). IC3 port-
folio members share reasons periodically via a central coor-
dinating process and, when an IC3 instance receives reasons
found by other processes, it removes all obligations from its
queue that are inconsistent with those reasons. With these
modifications Bradley was able to demonstrate that a port-
folio using 12 cores can complete an additional 12 proofs in
HWMCC’10 competition settings, compared with a serial
IC3 baseline.

Preliminary investigations of portfolio PDR are extended
in (Chaki and Karimi 2016), where a variety of strategies
for parallel portfolios with reason sharing between mem-
bers are described. Designed for hardware model checking
problems, which can have many initial states, each portfo-
lio member is a variant of IC3 that uses the deterministic
SAT solver MINISAT (Eén and Sörensson 2004). Portfo-
lio members perform their own clause pushing, thus there
is no need to synchronise the individual portfolio elements.



Domain (#Interesting/#Total) Abbr. PDRPLAN PDR-S PDR-P PS-PDR PD-PDR #CPUs
Logistics (158/198) LOG 63 197/− 198/1.71109 197/2.71102 198/5.08103 101
Rovers (16/40) ROV 40 39/0.6510 37/0.538 38/1.199 39/1.6811 70
Satellite (20/36) SAT 28 28/0.435 28/1.026 27/3.295 28/3.245 232
TPP (14/30) TPP 29 29/0.811 30/1.1513 30/3.2310 30/2.0712 21
Zenotravel (6/20) ZEN 20 20/1.585 20/1.894 20/5.553 20/5.64 26
Optical Telegraphs (153/165) OPT 38 153/21.4816 153/6.5587 153/5.9491

Philosophers (13/15) PHI 11 15/16.976 15/0.4110 15/1.3610

Pipesworld Notankage (33/50) PNT 46 41/0.134 44/0.796 47/0.914

Pipesworld Tankage (40/50) PTA 39 24/0.256 37/0.6817 39/0.9820

Storage (15/30) STO 30 21/0.011 21/0.041 25/0.114

Bag Transport (27/29) BAG 0 10/− 8/3.125 13/9.385

Bottleneck (9/25) BOT 20 24/6.641 25/0.431 25/−
Cave Diving (23/25) CAV 5 3/15.331 3/0.851 3/0.291

Chessboard Pebbling (21/23) PEB 3 3/3.561 3/1.971 3/2.291

Diagnosis (8/20) DIA 15 20/0.321 17/0.562 17/52.761

Document Transfer (18/20) DOC 4 11/1.072 10/1.426 10/1.416

Over Nomystery (23/24) ONM 0 5/− 2/− 2/−
Over Rovers (13/20) ORO 17 17/0.629 15/1.127 14/1.396

Pegsol (18/24) PEG 16 14/0.144 14/0.494 14/0.44

Pegsol Row5 (12/15) PRO 4 3/− 3/− 3/−
Tetris (20/20) TET 0 5/− 5/6.425 5/6.595

Table 1: Coverage and average runtime speedup factors.

In the two best strategies described, portfolio members are
required to check if the portfolio has proved the problem
safe. One strategy requires each portfolio element to derive
their own proof, and another has portfolio elements con-
sider the cumulative knowledge of all portfolio members,
checking if the problem is safe when the process is due to
increment k. The headline contribution is a detailed statisti-
cal and empirical analysis of portfolios in hardware bench-
marks. In (Chaki and Karimi 2016), the exploration of port-
folios in software verification is left as future work, and that
challenge is taken up in (Marescotti et al. 2017). Those au-
thors develop a divide-and-conquer portfolio approach using
SPACER (Komuravelli, Gurfinkel, and Chaki 2014), “parti-
tioning” the problem at hand syntactically into a set of sub-
problems, so that the concrete problem is safe iff every sub-
problem is safe. In addition to the innovation of partitioning,
the authors also develop a “heuristic” for how members of
the portfolio share reasons and search.

Our approach to decompositional planning using PDR is
based on the dependency graph concept that was first de-
scribed in (Knoblock 1994; Williams and Nayak 1997). In-
tuitively, that idea is to synthesise a concrete plan through
a process of iteratively refining plans using the abstrac-
tion hierarchy associated with the causal graph. These sem-
inal ideas were advanced in concert with literature re-
lated to (tree) decompositions (Darwiche 2001; Huang and
Darwiche 2003; Robertson and Seymour 1991), with the
planning literature developing conceptual frameworks and
algorithms that fall under the banner of factored plan-
ning (Amir and Engelhardt 2003; Brafman and Domsh-
lak 2006). These ideas are showcased and contrasted in
relation to the DTREEPLAN planning system in (Kelareva
et al. 2007). Unlike factoring/abstraction-refinement, our ap-

proach forms concrete plans by a simple concatenation oper-
ation, and not by sub-plan/action interleaving. Our approach
is enabled because we “edit” the goals of abstract subprob-
lems, thereby ensuring that—at least in practice on common
planning benchmarks—our subplan concatenation operation
yields a valid solution to the concrete problem at hand. In
this last respect, our contribution is related to (Abdulaziz,
Norrish, and Gretton 2015), a work in which the authors em-
ploy a goal editing idea to plan in systems composed of a set
of symmetric subsystems.

Conclusions and Future Work
We present two new parallel PDR algorithms designed to
decrease runtime by using multiple CPUs. Our evaluation of
these parallel algorithms shows a significant runtime reduc-
tion compared to serial PDR algorithms. We also demon-
strate compelling performance gains comparing to a parallel
portfolio baseline. Our PS-PDR algorithm exhibits a single
centralised queue of obligations, and proceeds by farming
the required SAT queries to a fixed size pool of workers,
which process the queries independently in parallel. Work-
ers service multiple formulae, one for each PDR layer and
are based on incremental SAT solving. Thus, workers ben-
efit from accumulated knowledge gleaned from successive
search exercises, and access to used assumptions in reason
finding. Our other algorithm, PD-PDR, uses a problem de-
composition based on the dependency graph. Other decom-
positions exist in the planning literature, and we expect these
to be worth exploring in the future. We also note that PD-
PDR can be used with a different solver taking the place
of PDR, including PS-PDR. Combining our parallel algo-
rithms in this way could give further performance increases.
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ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence 170(12): 1031–1080.
Robertson, N.; and Seymour, P. 1991. Graph minors. X. Ob-
structions to tree-decomposition. Journal of Combinatorial
Theory, Series B 52(2): 153–190. ISSN 0095-8956.
Streeter, M. J.; and Smith, S. F. 2007. Using Decision Proce-
dures Efficiently for Optimization. In In Proc. ICAPS, 312–
319.
Suda, M. 2014. Property directed reachability for automated
planning. Journal of Artificial Intelligence Research 50:
265–319.
Vizel, Y.; Weissenbacher, G.; and Malik, S. 2015. Boolean
Satisfiability Solvers and Their Applications in Model
Checking. Proceedings of the IEEE 103(11): 2021–2035.
Williams, B. C.; and Nayak, P. P. 1997. A reactive planner
for a model-based executive. In In Proc. IJCAI, volume 97,
1178–1185.


