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Abstract

Historically, planning and scheduling were considered sepa-
rate branches of computer science, addressing different prob-
lems. Planning concerns what actions to carry out to achieve
a goal, whereas scheduling concerns determining when and
how to perform actions to optimise a metric criterion. How-
ever, in many real-world applications, this distinction has be-
come increasingly blurred, with planning and scheduling of-
ten being integrated effectively.
This paper considers a relevant approximate computing-
based real-time task scheduling problem in which there are
multiple variants of each task, sharing the same mandatory
part, but with different optional components. In terms of qual-
ity of service (QoS), the longer the optional component for
each task is, the higher the quality of the resulting application
is. However, choosing the best variant may violate the given
deadline due to its longer execution time. Therefore, there
is a trade-off between the faster completion time (makespan
time) versus the achieved QoS. In such a scenario, a plan-
ning algorithm can be designed to work with different types
of given constraints to provide guarantees regarding the de-
livered QoS. To promote the use and integration of planning-
based techniques in scheduling, we propose a translation of
the above scheduling and task mapping problem into a plan-
ning problem expressed in the PDDL+ formalism.

Introduction
A real-time embedded system is one type of embedded sys-
tem dedicated to particular applications with real-time con-
straints in an embedded environment. In such scenarios, the
system’s correctness depends on the precision of the results
and the time they are produced. In today’s real-time em-
bedded systems, real-time applications are often represented
as Precedence-constrained Task Graphs (PTGs). Precisely,
the entire application consists of a collection of tasks (aka
nodes) under precedence constraints and dependencies be-
tween tasks (Stavrinides and Karatza 2010).

For such critical systems, approximated results achieved
in time are preferable to accurate results obtained after the
deadline. For instance, in a real-time video application, ini-
tially, an imperfect but acceptable quality video is produced
from the received data in each period (Roy and Raghunathan
2015). Further computation can be carried out for better re-
sults if additional processing time is available. Hence, cur-
rent safety-critical real-time embedded systems demand a

trade-off between time budget and task execution quality.
In the approximate computation approach, each task con-

tains a mandatory part followed by an optional part. The
mandatory part must be executed to completion to produce
an acceptable result, while the optional part refines the gen-
erated result. By evaluating the number of processor cycles
assigned to the optional part, the quality of service (QoS)
can be defined (Cao et al. 2018).

In this QoS-aware context, each task of the application
is equipped with multiple distinct implementations repre-
sented by different versions. Although all the versions of a
task produce the same output by completing the mandatory
part, their total execution length and accuracy of results may
vary depending upon the amount of optional part executed.
The higher version will return higher QoS by completing
additional optional parts. However, results with higher accu-
racy can typically only be generated at the expense of more
intensive computation, leading to deadline miss.

Some previous works (Cao et al. 2018; Saha et al. 2022)
have focused on maximising the QoS of such an application
through judicious selection of task versions so that execu-
tion of all the nodes in the task graph may be completed
within the given deadline while satisfying all dependency,
and resource (limited processor) related constraints, formal-
ising this scheduling problem as an Integer Linear Program-
ming (ILP).

Scheduling of tasks on multi-processors with timing con-
straints, precedence constraints, and resource constraints is
a challenging problem. Planning algorithms may be a useful
approach to solving those challenges. Planning and schedul-
ing are historically considered as two independent branches
addressing different problems which can be defined roughly
as follows: planning concerns what actions to be taken to
achieve a goal, whereas scheduling concerns determining
when and how to perform actions to optimise a metric crite-
rion. Despite this, in many real-world applications, this dis-
tinction has become more blurred (Barták 1999) and plan-
ning and scheduling are often integrated effectively (Gau-
dreault et al. 2011). Planning-based algorithms can provide
assurances to tasks concerning the ability to meet time con-
straints. Generally, planning to determine schedulability is
similar to the admission control mechanism in real-time sys-
tems. Depending on the required Quality of Service (QoS), a
planning algorithm can be developed to satisfy the different



types of given constraints to guarantee the achieved QoS or
to maximise the achievable QoS.

Throughout the years, the planning community has pro-
posed several planning formalisms of increasing expressive-
ness, e.g., PDDL2.1 (Fox and Long 2003), PDDL+ (Fox and
Long 2006) and PDDL3 (Gerevini et al. 2009), so that plan-
ning can be applied to a wider range of problems. PDDL2.1
was designed with the intention of enabling modelling of
temporal and resource aspects. PDDL+ goes further, enabling
the modelling of mixed discrete-continuous domains involv-
ing a logical and numeric component and providing a more
natural way of modelling such temporal aspects. The core
feature of PDDL+ is the sharp distinction between the agent,
modelled as usual with actions, and the environment, mod-
elled through processes and events. Processes are exogenous
changes that arise when certain conditions hold and act con-
tinuously on the numeric variables when time flows. Events
are instantaneous changes that act on the world when some
conditions are triggered.

The introduction of consumable resources and temporal
aspects of planning has reduced the gap that exists between
planning and scheduling. Furthermore, in the formulation of
the considered problem, it is possible to make decisions, i.e.,
to choose which version of a task to execute.

Due to the highlighted proximity between planning and
scheduling in more advanced problems, in this paper, we
propose a translation scheme to reformulate the QoS-Aware
Approximate Real-time task execution problem (hereinafter
shortened in QOS-ARTMS) into an equivalent PDDL+ prob-
lem.

The main contribution of this work is a novel transla-
tion that provides an (almost) solver-ready planning domain
model. This reformulation highlights how the expressive ca-
pacity of modern planning formalisms is able to capture
problems that natively include resources and temporal con-
straints. Furthermore, this translation enables the possibil-
ity of exploiting a broad spectrum of techniques designed
for planning, such as forward heuristic search, local-search
(Gerevini, Saetti, and Serina 2003; Hoffmann 2003), Satis-
fiability Modulo Theory problems (SMT) (Cashmore, Mag-
azzeni, and Zehtabi 2020) to address the QOS-ARTMS prob-
lem.

System Model and Problem description
In this section we outline the formalisation of QOS-ARTMS
problem according to (Cao et al. 2018). After that we out-
line the PDDL+ (Fox and Long 2006) problem, that is our
target language, by adopting the assumptions and formalisa-
tion provided in (Shin and Davis 2005; Percassi, Scala, and
Vallati 2021).

QOS-ARTMS formalisation
System Model This work assumes a homogeneous multi-
processor embedded processing platform. Thus, our system
consists of ν resources, which correspond to processors.

Task Model We model a real-time application (A) as a
PTG, that is a Directed Acyclic Graph (DAG) defined as
follows, G = ⟨T , E⟩, where T is a set of tasks (T =

{Ti | 1 ≤ i ≤ |T |}) and E is a set of directed edges
(E = {⟨Ti, Tj⟩ | 1 ≤ i, j ≤ |T |; i ̸= j}) representing
the precedence relations between distinct pairs of tasks. An
edge ⟨Ti, Tj⟩ refers to the fact that task Tj can begin exe-
cution only after the completion of Ti. A source task is a
task with no predecessors and similarly, we can define, a
sink task is the one without any successors. However, being
a real-time application, the entire application (A) must meet
its deadline, denoted as ∆, by executing all the associated
task nodes within the interval.

We have considered approximate computation tasks. Each
task Ti (1 ≤ i ≤ n) contains a mandatory part with execu-
tion cycles Mi and an optional part with execution cycles
Oi. Each task must execute Mi units to obtain the output of
acceptable quality. The optional part Oi becomes ready for
execution only when the mandatory part Mi is completed.
The optional part refines and improves the result hence, it
can be executed partially. The execution length li of task Ti

can be defined as :
li = Mi +Oi × µ

where µ ∈ [0, 1] denotes the percentage of the optional part
which is being executed. Thus, µ = 1 denotes that we ex-
ecute the entire Oi units and we will achieve the maximum
possible accurate result. Note that, both Mi and Oi are nat-
ural numbers and µ is such that Oi ∗ µ = Oj

i ∈ N.
It is further assumed that a task Ti may have ki differ-

ent versions; that is, Ti = {T 1
i , T

2
i , ..., T

ki
i }. Although all

versions of a task produce the same output by completing
the mandatory part Mi their total execution length li, the ac-
curacy of results may vary depending upon the amount of
optional part is executed (i.e., different values of µ). Thus,
the length (lji ) of jth version of the task Ti can be defined
as:

lji = Mi +Oi × µj
i = Mi +Oj

i

Before proceeding we need to introduce the primitives for
identifying the sink node (the final node to be performed)
and, given a task Ti ∈ T , the source tasks of Ti, the set of
tasks that have to be mandatorily executed before Ti. Given a
PTG G, we denote the sink task of G as sink(G), the unique
task Ti ∈ T such that it does not exist an edge ⟨Ti, Tk⟩ ∈ E .
Furthermore, given a task Ti ∈ T and a PTG G, we define
the source tasks set of Ti as:

S(Ti,G) = {Tj : ⟨Tj , Tk⟩ ∈ E ∧ Tk = Ti}.
Problem description We now present the required con-
straints to model this scheduling and allocation problem.
1. Unique Execute Start Time Constraint: Each task must

start executing on a particular processor at a unique time
step. The above constraint enforces the following for
each task:
• only one version will be selected for loading.
• will start its execution on the processor at a unique

time step.
• can be mapped only to one processor.

2. Resource Constraint: At any time step t, the number of
tasks executed in parallel is upper bounded by the num-
ber of processors.



3. Execution Dependency Constraint: Corresponding to
each directed edge (⟨Ti, Tj⟩ ∈ E) in the DAG, Tj must
start its execution only after its predecessor, Ti finishes.

4. Deadline Constraint: To ensure that the application A
meets its end-to-end absolute deadline ∆, the sink node
sink(G) must finish its execution within ∆.

5. Objective: The objective of the formulation is to choose
a feasible solution that maximises QoS of the application
through the appropriate choice of task versions (optional
parts). Hence, the objective can be written as follows:

Maximize QoS(A) (1)

QoS(A) =

|T |∑
i=1

Oi × µj
i (2)

Finally, combining these elements, we formalise a QOS-
ARTMS problem as a tuple A = ⟨G = ⟨T , E⟩, ν,∆⟩, where
G is a PTG, ν ∈ N is the number of available resources
and ∆ ∈ N is the deadline within the application has to be
performed.

Example 1 (Running Example). Let A = ⟨G = ⟨T , E⟩, ν =
2,∆ = 100⟩ be a real-time application where G is the
TPG defined as T = {T1, T2, T3, T4, T5, T6} and E =
{⟨T1, T2⟩, ⟨T1, T3⟩, ⟨T1, T4⟩, ⟨T2, T5⟩, ⟨T5, T6⟩}. A encom-
passes the following available versions for each task, i.e.,
T1 = {T 1

1 }, T2 = {T 1
2 , T

2
2 , T

3
2 }, T3 = {T 1

3 }, T4 = {T 1
4 },

T5 = {T 1
5 } and T6 = {T 1

6 }. The mandatory part has the
same length for all tasks, i.e., Mi = 15 for each i ∈ [1..6].
For the optional part and for each i ∈ {1, 3, 4, 5, 6} we
have Oi = 10 and µ1

i = 1 and then O1
i = 10. For T2

we have O2 = 20 with three different percentages of op-
tional part, i.e., µ1

2 = 0.2, µ2
2 = 0.5 and µ3

2 = 1 and
then O1

2 = 20 × 0.2 = 4, O2
2 = 10 and O3

2 = 20. The
source tasks of A are defined as follows: S(T1,G) = {},
S(T2,G) = {T1}, S(T3,G) = {T1}, S(T3,G) = {T1},
S(T5,G) = {T2} and S(T6,G) = {T5, T3, T4}. Further-
more we have sink(G) = T6. Solving A consists in iden-
tifying, for each task, which version to use, the timing, i.e.,
at what time starting the task, such that the ordering con-
straints prescribed by G are satisfied, occupying at most
ν = 2 resources, and executing the sink task within dead-
line ∆ = 10. Figure 1 depicts a graphical representation of
A. Figure 2 depicts a possible schedule for A that is com-
patible with the precedence constraints prescribed by G.

PDDL+ formalisation
In this section we report on the PDDL+ problem (Fox and
Long 2006). We specify our problems using propositional
formulas over numeric and Boolean conditions defined over
sets of numeric and Boolean variables. A numeric condi-
tion is of the form ⟨ξ ▷◁ 0⟩ with ξ being a numeric expres-
sion, and ▷◁∈ {≤, <,=, >,≥}. A Boolean condition is of
the form f = {⊤,⊥} with f being a Boolean variable.

A PDDL+ planning problem Π is the tuple
⟨F,X, I,G,A,E, P ⟩ in which each element is detailed
in the following. F and X are the Boolean and numeric
variables. Numeric variables take values from R. I is the

Figure 1: Graphical representation of a QOS-ARTMS prob-
lem A.

Figure 2: Graphical representation of a possible schedule for
A compatible with its precedence constraints. Each task in
{T1, T3, T4, T5, T6} admits only one version, while for T2

there are three variants, i.e., {T 1
2 , T

2
2 , T

3
2 } and one must be

chosen.

description of the initial state, expressed as a full assignment
to all variables in X and F . G is the description of the goal,
expressed as a formula. A and E are the sets of actions
and events, respectively. Actions and events are pairs ⟨p, e⟩
where p is a formula and e is a set of conditional effects of
the form c ▷ e. Each conditional effect c ▷ e is such that (i) c
is a formula and (ii) e is a set of Boolean assignments of the
form ⟨f := {⊥,⊤}⟩ or numeric assignments of the form
⟨{asgn, inc, dec}, x, ξ⟩ where ξ is a numeric expression.
P is a set of processes. A process is a pair ⟨p, e′⟩ where p
is a formula and e′ is a set of numeric continuous effects
expressed as pairs ⟨x, ξ⟩ where ξ is the net derivative of x.

Let a = ⟨p, e⟩ be an action/event/process, we use pre(a)
to refer to the precondition p of a, and eff(a) to the effect e
of a. Moreover, in the following we will use a, ρ, and ε to
refer to a generic action, process, and event, respectively. In
order to make the notation more concise, Boolean conditions
and assignments of the form ⟨f = ⊥⟩ (⟨f := ⊥⟩) and ⟨f =
⊤⟩ (⟨f := ⊤⟩) are shortened to f and ¬f , and conditional
effects of the form ⊤ ▷ e are rewritten as e.

A PDDL+ plan πt is a pair ⟨π, ⟨ts, te⟩⟩ where: π =



⟨a1, t1⟩, ..., ⟨an, tn⟩ with ti ∈ Q is a sequence of time-
stamped actions; ⟨ts, te⟩, with ts, te ∈ Q and ts ≤ te, is
the envelope within which π is performed. We say that πt is
well-formed iff ∀ i, j ∈ [1..n] and i < j, then ti ≤ tj and
ts ≤ ti ≤ te hold. Hereinafter we consider just well-formed
plans.

In the following translation, we use a fragment of the ex-
pressive power of PDDL+ essentially to represent the flow
of time. Suppose having a process ρ = ⟨⊤, {⟨time, 1⟩}⟩.
This process should be understood as: when time flows, the
precondition of ρ is always satisfied and the the variable
timechange according to ˙time = 1 and then time(t) = t.

Intuitively, a PDDL+ problem consists in finding plans
along a potentially infinite timeline, whilst conforming to a
number of processes and events that may change the state of
the world as time goes by. Both processes and events are ap-
plied as soon as their preconditions become satisfied (must
transitions); differently, actions are decisions that need to be
taken (may transitions).

Since QOS-ARTMS is natively formulated in discrete time,
in the following we adopt the discrete PDDL+ semantics for-
malised by (Percassi, Scala, and Vallati 2021).

From QOS-ARTMS to PDDL+ planning
In this section, we describe how to reformulate a QOS-
ARTMS problem into an equivalent PDDL+ planning task.
In the proposed translation, tasks are initialised through
actions. Processes are used in combination with events,
according to the start-process-stop model (Fox and Long
2006), for modelling the temporal execution of tasks whose
termination is captured through events. Further details are
provided below.

Given a QOS-ARTMS task A = ⟨G, ν,∆⟩, the cor-
responding PDDL+ problem is defined as ΠQOS-ARTMS =
⟨F,X,A, I,G,E, P ⟩ where:

F = D ∪ S ∪ S

D = {dTi : 1 ≤ i ≤ |T |}
S = {s

T
j
i
: 1 ≤ i ≤ |T |, 1 ≤ j ≤ |Ti|}

S = {sTi : 1 ≤ i ≤ |T |}
X = Xtime ∪ {count, time}

Xtime = {timeTi : 1 ≤ i ≤ |T |}
A = {a

T
j
i
: 1 ≤ i ≤ |T |, 1 ≤ j ≤ |Ti|}

pre(a
T

j
i
) = ¬dTi ∧

∧
Tz∈S(Ti,G)

dTz ∧ ¬sTi ∧ ⟨count + 1 ≤ ν⟩

eff(a
T

j
i
) = {s

T
j
i
, sTi , ⟨inc, count, 1⟩}

I = {⟨x := 0⟩ : x ∈ Xtime ∪ {time, count}}
P = {ρTi : 1 ≤ i ≤ |T |} ∪ {ρtime}

ρTi = ⟨sTi , {⟨timeTi , 1⟩}⟩
ρtime = ⟨⊤, ⟨time, 1⟩⟩
E = {ε

T
j
i
: 1 ≤ i ≤ |T |, 1 ≤ j ≤ |Ti|}

pre(ε
T

j
i
) = ⟨timeTi = lji ⟩ ∧ s

T
j
i

eff(ε
T

j
i
) = {¬s

T
j
i
,¬sTi , dTi , ⟨dec, count, 1⟩}

G = dsink(G) ∧ ⟨time ≤ ∆⟩

Variables The translation make use of the novel sets of
variables D, S, S and Xtime. The Boolean variables in D are
used to attest that each task in T have been executed, S and
S are used for correctly handling the execution of the tasks
(explained below), while the numeric variables Xtime are lo-
cal timers used for keep track of the temporal advancement
of the tasks. There are also two additional numeric variables,
i.e., count and time. The first one is used for representing the
number of occupied processors, while the second one is the
global timer which is always linearly increased by the pro-
cess ρtime.

Initial State In the initial state both local and global
timers, i.e., Xtime ∪ {time} are initialised to 0. Since in the
starting state, none of the processors is occupied, then also
count is initialised to 0.

Tasks execution The execution of each task Ti ∈ T is
modelled through a set of ki actions, i.e., {aT 1

i
, ..., a

T
ki
i

} ⊂
A, a single process ρTi

∈ P and a set of ki events, i.e.,
{εT 1

i
, ..., ε

T
k1
i
} ⊂ E. Such actions are used for starting the

execution of a version of Ti, the process ρTi is simultane-
ously activated when one of the ki action is performed and
it is used for counting how much time is passed from the
start. Finally, one and only one event, depending on the cho-
sen version of Ti, ends the execution of the task. A more
detailed explanation follows.

The execution of a task version T j
i of Ti can be started

in t′ ∈ [0,∆] by executing the action aT j
i

in a state s |=
⟨time = t′⟩ if the following preconditions holds. Firstly,
all the source tasks of Ti have been executed, i.e., s |=∧

Tz∈S(Ti)
dTz

. Secondly, to ensure that the resource con-
straint is satisfied, aT j

i
can be executed iff s |= ⟨count+1 ≤

ν⟩. Once aT j
i

is executed, making sTi
true, none of the

versions of the task can be started. The execution of aT j
i

causes the increment of count, which models the occupa-
tion of a processor (⟨inc, count, 1⟩). From t′ onwards, in-
dependently from the chosen version of Ti, the related pro-
cess ρTi is activated and linearly increases the local timer
timeTi . The activation of ρTi and the linear increase of
timeTi simulate the progress of the execution of task T j

i
over time. The process ρTi is finally deactivated by the
event εT j

i
∈ {εT 1

i
, ..., ε

T
ki
i

}, which is triggered when T j
i

have been executed for the corresponding time, that is lji
(⟨timeTi

= lji ⟩). The aforementioned event, stops the pro-
cess (¬sT j

i
∈ eff(εT j

i
)), attest the completion of the execu-

tion of Ti (dTi
∈ eff(εT j

i
)) and frees the occupied resource

by decreasing count (⟨dec, count, 1⟩ ∈ eff(εT j
i

). Once a task
has been completed, in any version, it cannot be executed
again (for each j ∈ [1..ki], then pre(aT j

i
) |= ¬dTi

).

Goal state The goal is expressed as a conjunction in which
it is required that the sink node has been executed (dsink(G))
and the global timer is lesser than the deadline (⟨time ≤ ∆⟩).
Example 2 (QOS-ARTMS Translation - Continuing on Ex.
1). Let A = ⟨G, ν = 2,∆ = 10⟩ be the QOS-ARTMS



problem provided in 1. Note that, according to Ex. 1 we
have for each i ∈ {1, 3, 4, 5, 6} that l1i = Mi + Oi ×
µj
i = 15 + 10 × 1 = 25, while, for i = 2, we have

l12 = M2 + O2 × µ1
2 = 15 + 20 × 0.2 = 19, l22 = 25

and l32 = 30. The corresponding PDDL+ problem is defined
as ΠQOS-ARTMS = ⟨F,X,A, I,G,E, P ⟩ where:

F =

|T |=6⋃
i=1

{dTi} ∪
|T |=6⋃
i=1

|Ti|⋃
j=1

{s
T

j
i
} ∪

|T |=6⋃
i=1

{sTi}

X =

|T |=6⋃
i=1

{timeTi} ∪ {time, count}

A =

|T |=6⋃
i=1

|Ti|⋃
j=1

{a
T

j
i
} where:

• pre(aT1
1
) = ¬dT1 ∧ ¬sT1 ∧ ⟨count + 1 ≤ 2⟩ and eff(aT1

1
) =

{sT1
1
, sT1 , ⟨inc, count, 1⟩};

• pre(aT1
2
) = ¬dT2 ∧ dT1 ∧ ¬sT2 ∧ ⟨count + 1 ≤ 2⟩ and

eff(aT1
2
) = {sT1

2
, sT2 , ⟨inc, count, 1⟩};

• pre(aT2
2
) = ¬dT2 ∧ dT1 ∧ ¬sT2 ∧ ⟨count + 1 ≤ 2⟩ and

eff(aT2
2
) = {sT2

2
, sT2 , ⟨inc, count, 1⟩};

• pre(aT3
2
) = ¬dT2 ∧ dT1 ∧ ¬sT2 ∧ ⟨count + 1 ≤ 2⟩ and

eff(aT3
2
) = {sT3

2
, sT2 , ⟨inc, count, 1⟩};

• pre(aT1
3
) = ¬dT3 ∧ dT1 ∧ ¬sT3 ∧ ⟨count + 1 ≤ 2⟩ and

eff(aT1
3
) = {sT1

3
, sT3 , ⟨inc, count, 1⟩};

• pre(aT1
4
) = ¬dT4 ∧ dT1 ∧ ¬sT4 ∧ ⟨count + 1 ≤ 2⟩ and

eff(aT1
4
) = {sT1

4
, sT4 , ⟨inc, count, 1⟩};

• pre(aT1
5
) = ¬dT5 ∧ dT2 ∧ ¬sT5 ∧ ⟨count + 1 ≤ 2⟩ and

eff(aT1
5
) = {sT1

5
, sT5 , ⟨inc, count, 1⟩};

• pre(aT1
6
) = ¬dT6 ∧dT5 ∧dT3 ∧dT4 ∧¬sT5 ∧⟨count+1 ≤ 2⟩

and eff(aT1
5
) = {sT1

5
, sT5 , ⟨inc, count, 1⟩}.

I =

|T |=6⋃
i=1

{⟨timeTi := 0⟩} ∪ {⟨time := 0)⟩, ⟨count := 0⟩}

P =

|T |=6⋃
i=1

{⟨sTi , {timeTi , 1}⟩ ∪ {ρtime = ⟨⊤, ⟨time, 1⟩⟩}}

E ={εT1
2
, εT2

2
, εT3

2
} ∪

⋃
i∈{1,3,4,5,6}

{εT1
i
}

εT1
2
=⟨⟨tT2 = 19⟩ ∧ sT1

2
, {¬sT2 ,¬sT1

2
, dT2 , ⟨dec, count, 1⟩}⟩

εT2
2
=⟨⟨tT2 = 25⟩ ∧ sT1

2
, {¬sT2 ,¬sT1

2
, dT2 , ⟨dec, count, 1⟩}⟩

εT3
2
=⟨⟨tT2 = 30⟩ ∧ sT1

2
, {¬sT2 ,¬sT1

2
, dT2 , ⟨dec, count, 1⟩}⟩

εT1
i
=⟨⟨tT2 = 25⟩ ∧ sT1

i
, {¬sTi ,¬sT1

i
, dTi , ⟨dec, count, 1⟩}⟩

G = dsink(G) ∧ ⟨time ≤ ∆⟩ = dT6 ∧ ⟨time ≤ 100⟩

Note that the εT 1
i

definition is provided for each i ∈
{1, 3, 4, 5, 6}.

Handling QoS in ΠQOS-ARTMS

In this section, we explore some of the challenges posed by
the resulting planning problem and how to effectively ad-
dress it.

The PDDL+ problem ΠQOS-ARTMS obtained through the pro-
posed translation is unaware of the notion of quality of the
computed solution, i.e., QoS(A).

There are several planning systems that can reason
over the PDDL+ problem ΠQOS-ARTMS, such as UPMUR-
PHI (Penna et al. 2009), DINO (Piotrowski et al. 2016),
SMTPLAN(Cashmore, Magazzeni, and Zehtabi 2020) and
ENHSP (Scala, Haslum, and Thiébaux 2016). However,
these planning engines exploit heuristics designed to min-
imise the makespan of the plan. Then, if we used these plan-
ning systems off-the-shelf for solving ΠQOS-ARTMS, we would
compute plans neglecting the notion of QoS.

We have two possibilities for incorporating the quality of
a solution within the PDDL+ formulation. Firstly, we can ex-
tend the PDDL+ formalism to take account the action costs
under the form of a cost function that associate to each action
a ∈ A a real non-negative number, i.e., c : A → R+

0 . How-
ever, this choice poses two problems. The original problem
A is formulated in terms of QoS, and so it has to be refor-
mulated in terms of costs. Given a task Ti ∈ T , each variant
in {T 1

i , ..., T
ki
i } has a term which contributes to QoS, i.e.,

{O1
i , ..., O

ki
i }. Such terms can be reformulated as costs by

using the following simple mapping: for each j ∈ [1..ki],

then cji =
max {O1

i ,...,O
ki
i }

Oj
i

.
Now the PDDL+ problem can be extended by adding a

cost function defined as follows:

c(a) =

{
cji if a = aT j

i

0 otherwise.

Now we can associate to each valid plan πt = ⟨π, ⟨ts, te⟩⟩
for ΠQOS-ARTMS a cost function, i.e., c(πt) =

∑n=|π|
i=1 c(ai),

for which finding the optimal plan which minimises the cost
function is equivalent to finding the best scheduling for A
which maximises the QoS. This choice, however, involves
the engineering of the PDDL+ planning engines in order to
make them sensitive to costs, as in the past, the heuristics de-
signed for classical planning, originally conceived for unit-
cost planning tasks, have been generalised for handling the
non-unit-cost case (Keyder and Geffner 2008).

PDDL2.1 provides explicit handling of customised met-
rics to sort the plans according to a qualitative criterion
(Fox and Long 2003). Percassi, Scala, and Vallati 2021 re-
cently proposed two translations for reformulating a PDDL+
problem into a discretised PDDL2.1 task. These translations,
combined with the possibility of exploiting customised
plan metrics, make these schemata suitable for addressing
the QOS-ARTMS, doubly reformulated, especially since the
QOS-ARTMS task is natively formulated in a discrete fash-
ion. For making the resulting PDDL2.1 problem QoS-aware,
it suffices just to add a numeric variable cost and increase it
according to the definition of c(a) given above.

A simpler and alternative way could be to create hand-
crafted PDDL+ heuristics, encapsulating the knowledge
about the QoS within them, to address the QOS-ARTMS
problem as a forward search problem.

The exploration of how to effectively address the resulting
planning problem is left to future works.



Conclusions
The QoS-Aware Approximate Real-time tasks execution on
Multiprocessor Systems problem is a relevant and challeng-
ing scheduling problem. This problem involves different
versions of the tasks to be executed which differently im-
pact the quality of the resulting application. The schedul-
ing must also be subject to constraints concerning the prece-
dence over the tasks, the limited number of resources and a
deadline within which to complete all the tasks.

In this article, we have proposed a novel translation that
allows one to cast a given QOS-ARTMS problem into a
PDDL+ planning task. The problem thus obtained can be ad-
dressed by applying a further reformulation present in the
literature (Percassi, Scala, and Vallati 2021) to discretise a
PDDL+ problem into a numeric one. The models obtained
are almost ready to be used, but still require some dedi-
cated effort to be able to deal with them properly. For the
future, we see several avenues for extending this work, e.g.,
testing existing planning engines on the reformulated tasks
and designing heuristics specifically targeted to address a
QOS-ARTMS problem. Alternatively, since discrete PDDL+
is equivalent to PDDL2.1, it is possible to directly reformu-
late the QOS-ARTMS problem in PDDL2.1. We intend to in-
vestigate which planning formalism is best suited to model
this kind of problem.
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