
Deep Reinforcement Learning for Plan Execution

Gonzalo Montesino Valle1 and Michael Cashmore2

University of Strathclyde, Glasgow, Scotland
1gonzalo.montesino-valle@strath.ac.uk, 2michael.cashmore@strath.ac.uk

Abstract

There are many different methods for the deliberative control
of autonomous systems in stochastic environments, each with
different strengths and limitations. Reinforcement Learning
can provide robust performance in unpredictable environ-
ments, but its decisions are often not predictable. In contrast,
Automated Planning can provide explicable and transparent
behaviour but its performance drops when the environment is
uncertain.
In this paper we discuss an approach to plan execution
through reinforcement learning by training an agent to follow
predetermined plans. The implementation of the approach
leads to the complex task of defining evaluation metrics that
describe the desired behaviour. We describe the implementa-
tion of this approach as a set of agents, which differ in their
reward function, and were trained and evaluated in three sce-
narios in which plan execution can deviate and be recovered.

1 Introduction
Reinforcement Learning (RL) and AI Planning (AIP) are ap-
proaches to anticipatory thinking that focus on similar se-
quential decision-making problems. Their integration into
a cohesive approach has been well-studied, and the area
has recently gathered more attention. For example, Illanes
et al. (2020) use partial order plans to guide a RL agent
and to structure the reward function. Kõvári, Hegedũs, and
Bécsi. (2020) use RL to provide a policy for action selec-
tion in Monte Carlo Tree Search. Agostinelli et al. (2021)
use learning to obtain a heuristic function that can then be
used to guide AIP search. These approaches either use AIP
to determine the hyperparameters of the RL and improve its
performance, or to use RL within AIP to enhance the perfor-
mance of search.

We propose an alternative integration, in which plans are
generated offline using search and flexibly executed online
using a trained agent. The core idea is that both the current
state and plan can be passed as input to the RL agent, and
the agent will attempt to execute that plan. Plan execution
can be seen as a control task in which the autonomous agent
should remain on the planned path, and be able to correct
any deviation caused by uncertainty in the environment. Re-
inforcement learning has proven to be a robust and high per-
formance tool for control problems in these types of envi-
ronment.

Training such an agent requires the definition of what it
means to follow a plan, and to design a reward function that
encourages this behaviour. In this paper we define two eval-
uation metrics – to minimise time spent deviating from the
plan, and to maximise the number of planned states visited.
We motivate each of these metrics and explain how they are
often in conflict with one another. Consequently, we believe
that the defining a desired execution behaviour is a domain-
specific decision.

We describe the setup used to train agents according
to both metrics, including definitions of reward functions,
agent architecture, and state representations. We evaluate
these agents by executing plans in three scenarios where
plan execution might deviate and be recovered. The evalu-
ation provides clear evidence that it is feasible to achieve a
RL agent that is able to recover and execute plans, by exe-
cuting on average above 60% of the overall plan in scenarios
with a high degree of uncertainty.

We present related work in robust plan execution and plan
recovery in Section 2. In Section 3 we provide some back-
ground on the RL techniques used to construct our flexi-
ble plan execution agents, which are described fully in Sec-
tion 4. The Evaluation is described in Section 5.

2 Related Work
While RL is a natural choice for dealing with stochastic en-
vironments, there are also a variety of approaches in AIP
for dealing with non-deterministic and stochastic models.
For example: replanning when execution fails (Fox et al.
2006a); contingent and conformant planning (Ghallab, Nau,
and Traverso 2004); or probabilistic planning, which mod-
els the non-determinism in the problem used by the planner
to compute a plan (Mausam and Kolobov 2012). Jimenez et
al. (2013) approach the problem by learning the probability
of action success, which is then feed back to the planner to
compute an improved plan. Ribeiro et al. (2021) instead de-
velop the OLISIPO algorithm which represents a partially
ordered plan as a Dynamic Bayes Net and at each stage
of execution selects the action from the partial order that
maximises the plan’s probability of success. Saint-guillain
et al. (2021) propose the LILA algorithm to solve the prob-
lem of plan execution for PSTN based on Monte Carlo Tree
search. LILA uses the idea of ”playing a game against na-
ture” in which the MCTS nodes are divided into decision

nodes and contingency nodes. The contingency nodes simu-
late the randomness of the PSTN schedule, whereas the de-
cision nodes set the starting time of each action.

In contrast to these approaches, we use standard AIP ap-
proaches to synthesize the plan offline, and then apply RL in
the flexible execution of that plan. In this way, the plan can
be generated and adjusted offline, for instance to adhere to a
set of preferences or standard operating procedures, and be
executed as closely as possible to what was agreed. This is
similar to the problem tackled by Iocchi et al. (Iocchi et al.
2016) who introduce a formalism for plan representation as
Petri-Net plans, which can then be extended by execution
rules to explicitly include recovery behaviours. These rules
are able to return to the prescribed plan execution for some
set of known non-deterministic outcomes. Our approach in-
stead relies upon RL to execute the plan while responding to
known and unknown outcomes.

Flexible plan execution includes plan execution that is
able to recover from unexpected outcomes such as action
failure. Another concept in flexible plan execution is to exe-
cute a plan while exploiting unexpected opportunities. Bor-
rajo and Veloso (2021) define opportunities as the possibility
of unplanned shortcuts that appear during execution and not
taken into account during planning; they develop an algo-
rithm to exploit these opportunities. Replanning can also be
used to adapt to incoming goals; Cushing et al. (2008) de-
scribe a method of continually improving the current plan in
an anytime fashion, replanning when the main plan deviates
too far from current set of known objectives. Cashmore et
al (2018) exploit the difference between conservatively es-
timated and real duration of actions to produce a net time
within which soft goals can be achieved by generating sepa-
rate plans for opportunities and merging them into the main
thread of execution.

In this paper we focus on flexible plan execution for fail-
ure recovery but the same principles applied to failure re-
covery could be used to develop an agent which focuses on
exploiting opportunities. This would be done by defining an
alternative evaluation metric, but is out of the scope for this
paper.

3 Reinforcement Learning
Reinforcement learning (RL) is a branch of machine learn-
ing that learns through successive interaction with the en-
vironment to achieve an optimal policy (Sutton and Barto
2018). The agent converges to the optimal policy by updat-
ing it through a trial and error process until it converges
to the optimal policy. A RL agent is divided into a policy
function which maps states to actions and a value function
which maps states to numerical estimate of how rewarding
that state is. This division leads to two choices while learn-
ing: Value-based optimises the value function, while Policy-
based optimises the policy function. Many algorithms use
value functions called Q-functions which give a numerical
estimate of the current state action pair rather than only the
state. The choice of RL algorithm in general depends on
the simulation cost, needed versatility, and computational
simplicity of the problem domain. Below we discuss three
model-free RL methods – we exclude model-based as the

main focus is on the policy not the model itself, and model-
free leads to higher versatility. We describe the applicabil-
ity of these methods to flexible plan execution in terms of:
sample efficiency (which needs to be high for more compu-
tationally demanding domains, such as planning problems),
versatility of the agent, type of action/state space, and possi-
ble variance and bias.

Advantage Actor Critic (A2C) (Mnih et al. 2016) is an
upgrade of the actor critic structure that adds to the value
function an advantage function that compares each action to
the “general” action. The actor-critic method combines the
policy-based (Actor) and the value-based method (Critic) to
exploit the benefits of both methods. Combining both meth-
ods leads to the possibility of using both continuous and dis-
crete action spaces, as well as having a lower bias and be-
ing more versatile. This benefit comes with an increase in
variance compared to the DDQN and an decrease in sample
efficiency.

Proximal Policy Optimizer (PPO) (Schulman et al.
2017) is an improved combination of A2C and Trust Re-
gion Policy Optimization (TRPO). The main idea behind
TRPO is that the updated policy is not too far from the pre-
vious one, so clipping is needed. The introduction of TRPO
to A2C leads to decreasing the variance and increasing the
sample efficiency, with a slight increase in bias, as well as
maintaining the bigger part of the benefits of A2C.

Flexible plan execution involves both discrete and con-
tinuous actions, and the method must have very high sam-
ple efficiency. Variance and bias problems that come with
model-free RL can be solved by hyperparameter tuning.
Given these requirements, we use PPO in our evaluation.

4 Flexible Plan Execution Agent
In this section we first discuss what it means to follow a
plan, defining two different categories of evaluation metric.
Following this we define reward functions that encourage
behaviour according to these metrics. Finally we briefly de-
scribe observations made by RL agents that include planned
states. Through RL we train a policy π : Π×S → A, which
is in charge of executing plan Π.

4.1 Evaluation Metrics
RL learns to optimize its policy (behaviour) to maximize
reward, making the construction of the reward function a
critical design decision. The reward should encourage be-
haviour that maximises some metric that evaluates how well
the plan is executed. Defining an evaluation metric that mea-
sures how well a plan was followed during execution is not a
trivial task. We propose the two such definitions and for each
case further define both a hard (Γ) and soft (Γ̂) metric. The
hard metrics use a Boolean condition that considers states
to be part of the plan or not. In contrast the soft metric con-
siders states that are similar to, but not exactly the same as,
planned states - this requires a measure of distance between
states, which we discuss at the end of this section.

Maximising Plan States Visited How well the plan was
executed could be measured by considering how many of the
planned states were visited during execution. For instance,

in surveillance scenarios such as fire detection or search and
rescue it might make sense to ensure that each planned ob-
servation is made and in roughly the same timeline, even if
this requires additional actions to recover from unexpected
deviations.

This measure is defined as max (|Se ∪ Sp|/|Sp|) where
Se is the set of all executed states and, Sp is the set of all
states that are part of the plan. From this interpretation we
can derive the following metrics:

Γp =
|Sp ∩ Se|

|Sp|
∈ [0, 1] (1)

Γ̂p =
1

|Sp|
∑

sp∈Sp

1

1 + minse∈Se(γ(se, sp))
∈ [0, 1] (2)

where se ∈ Se and sp ∈ Sp are the executed states and
planned states respectively, and γ(se, sp) ∈ R+ is a mea-
sure of distance between states. In both metrics metric the
maximum value 1 means that every state was visited during
execution. Equation 2 is a function bounded between 0 and
1 that computes the average of the inverse of the minimum
distance to each plan state.

Minimizing Plan Difference Flexible plan execution can
also be interpreted as the execution that minimizes the
amount of executed states that do not belong to the plan.
This interpretation makes sense when the plan that was gen-
erated adheres to a set of preferences which are not or can-
not be modelled, and keeping close to the planned behaviour
meets these preferences. It also makes sense in the context
of multi-agent systems, and adhering as close as possible to
pre-agreed plans minimises the risk of interference. From
this interpretation we can derive the following metrics:

Γn =
|(Se \ Sp)|

|Se|
∈ [0, 1] (3)

Γ̂n =
1

|Se|
∑

se∈Se

min
se∈Se

(γ(se, sp)) (4)

In contrast to metrics (1) and (2), lower is better with Γn =
0 (and Γ̂n = 0) denoting zero deviance from the planned
trajectory of states.

These metrics (1-4) lead to an identical behaviour in de-
terministic and certain environments, but introducing uncer-
tainty leads to a behaviour difference, as figure 1 illustrates.

In the top path metrics (1) and (2) are optimised, ensur-
ing that all of the planned states are visited, although addi-
tional activity is required to return to states after unexpected
events. In the bottom representation metrics (3) and (4) are
optimised; the agent quickly returns to the planned trajec-
tory of states when some uncertain event causes it to de-
viate. However, there are some states which are not visited
at all. With respect to maximizing metric (1), the top path
(Γp = 1) scores better than the bottom path (Γp = 0.6).
Conversely, with respect to minimizing metric (2), the bot-
tom path (Γn = 0.4) scores better than the top path (Γn =
0.5).

Figure 1: Illustration of plan execution possibilities. The
plan is represented as a black dotted line and in red is rep-
resented the executed path. The top path maximizes planned
states visited, the bottom path minimizes plan difference.

State Distance Measure The definition of a distance func-
tion between plans is not an easy task. Fox et al. (2006b) de-
fine this distance as the total number of different actions that
appear in each plan. Both soft metrics (Γ̂) rely on a distance
function γ(se, sp) - in our context we are interested in the
distance between states rather than plans. In this direction,
Bryce (2014) introduces a distance metric based on land-
marks. Below we we outline an initial idea that is used in
our implementation.

We describe the logical part of a state s as a set of facts,
and divide this set into two distinct subsets: the dynamic
state (Ds), the set of facts and numeric fluents that can be
altered by an action; and the static state. Given this we take
a similar approach to Bryce (2014), where we define the dis-
tance as:

γ(se, sp) ≡ d(Dse , Dsp) (5)
where d(Dse , Dsp) is a domain-specific distance measure
between states se and sp, such as the one which we describe
in Section 5.

4.2 Reward Functions
In this paper we distinguish between two types of reward:
final reward and per-step reward. For each type we con-
structed a separate reward function for training metrics (1-
4). Building the reward function for metrics (1) and (2) is
straightforward, as RL typically already maximizes a given
metric. To convert metrics (3) and (4) into a reward, we can
simply consider maximizing the complement of the set.

Final reward functions (Rf
p , Rf

n) only give a positive re-
ward to the agent once the final plan state is achieved. This
incentivizes the agent to always achieve the final state, but
could lead the agent skipping planned steps to reach the goal.
From the two metrics the constructed reward functions are:

Rf
p =

|Sp ∩ Se|
|Sp|

= Γp

and

Rf
n = 1− |(Se \ Sp)|

|Se|
= 1− Γn

Per step reward functions (Rs
p, Rs

n) give reward to the
agent every step. This gives the same importance to all states
of the plan, but could lead the agent to repeating plan states

to achieve higher reward, and terminating execution without
achieving the goal. From the two metrics the constructed re-
ward functions are:

Rs
p =

{
1

|Sp| if current state is a plan state
0 otherwise

(6)

and
Rs

n =
1

(minsp∈Svp γ(sp, s) + ϵ)
(7)

for some small ϵ ∈ R+ and Svp ⊂ Sp is a subset of the
planned states that is observable by the agent. We describe
Svp in more detail in Section 4.3.

4.3 Observation
We use PPO training method throughout this section. Below
we discuss the other factor that influences the behaviour of
the agent: the representation observed by the agent.

RL agents that are trained to solve planning problems by
achieving a goal typically make observations of the state to
choose which action to apply. In contrast our agent must in-
clude both the current state and the plan within the obser-
vation. The nature of reinforcement learning require fixed
size observation, placing a limit on the number of planned
states include in the observation. This subset of planned
states is called the visible plan states Svp. The visible plan
states includes a set of consecutive planned states, beginning
with the state following the most recently achieved planned
state. The number of visible plan states in the observation
(nvps) can be configured, and the most effective number will
depend upon domain-specific factors, such as the expected
length of deviation from the plan. We suggest the following
guide:

nvps ≥ Emax(Bs) (8)
where Emax(Bs) is the expected maximum number of con-
secutive planned states that cannot be achieved and must
be skipped. Intuitively, Emax(Bs) is how “far ahead” in the
plan that the agent will need to observe in order to rejoin its
trajectory.

Given that more than one state is included in the observa-
tion (the current state and planned states) encoding the entire
state described in the planning model will result in unneces-
sary complexity (i.e. an increase in the number of neurons),
which leads to an increase in training time as the learning
process abstracts the important features. This problem can
be overcome by passing in only the dynamic state (Ds) for
planned states.

5 Experimentation
We evaluate the agents against the hard evaluation metrics
of each definition of “plan following”, i.e. equations (1)
and (3). We add to these metrics a third, which represents
whether the final state is achieved.

Γg =

{
+1 if final state achieved
0 otherwise

(9)

The agents were trained using PPO. We chose nvps = 5
which is half of the mean plan length (rounded down). Four

Figure 2: Grid-World example.

agents were trained using each of the the four different re-
ward functions (Rf

p , Rf
n, Rs

p, Rs
n), for 10000 episodes (plan

executions) in each of four scenarios. To evaluate sensitivity
with respect to nvps an additional two agents where trained
using the best preforming reward function on the unachiev-
able plan state scenario. This scenario was chosen as it is the
most highly influenced by this hyper-parameter. Every agent
was trained for a total of 5 million steps (actions taken) on
each of the scenarios. The number of steps, and other hyper-
parameters of PPO could be further tuned to improve per-
formance, which we discuss in the conclusion. In total we
trained 18 agents. We scored each agent on each uncertain
scenario - excluding the combined training environment -
using the evaluation metrics (1), (3), and (7).

In Section 5.1 we describe the four scenarios; in Sec-
tion 5.2 we discuss the performance of these agents and sug-
gest improvements; in Section 5.3 we analyse the sensitivity
with respect to the number of visible plan states1.

5.1 Evaluation Scenarios
Our evaluation environment is a grid world 8× 8 where the
start position is in the top left corner and the goal position is
randomly generated in the right bottom 4× 4 corner area. In
figure 2, we show an example of an empty grid world where
the green square marks the final goal, the light blue square
marks the initial position and the large blue circle is the cur-
rent position. The blue dotted lines represent the executed
path and the red line represents the remaining plan steps.
The only possible actions are to move one square up, down,
left or right. Grid world environment was selected due to
its simple interpretation that lets us clearly explain the sug-
gested concepts. Three plan execution scenarios are derived
from main the environment:

• Non-deterministic action outcomes include a 10%
chance that any action results in a move to a random po-
sition within a 3×3 area centered on the current position.
The main goal of this scenario is to simulate an agent that,

1RL environments, PDDL domains, and source code is avail-
able online: https://anonymous.4open.science/r/Intex2022 Codes-
97E5

due to uncertainty in the environment, is currently on a
state that does not match the states of the plan.

• Unachievable plan state modifies the problem instance
to include a set of random obstacles on the map. The goal
of this scenario is to explore the possibility that some plan
states are not achievable due to unexpected events or dif-
ferences in planning model versus reality. The scenario
evaluates the agent’s ability to overcome these obstacles
and rejoin a later state in the plan.

• Missing action is simulated in our environment by re-
moving one random action from the plan before sending
it to the agent to be executed (the action can not be the
first or last action of the plan). This scenario is based on
the idea that the plan could have missing actions due to
small model errors. As an example, we have a robot that
has to move from one room to another, in the model the
door is open but during execution the door is closed. The
agent has to perform additional actions to continue with
the plan.

• Combined Environment combines all of the above. Two
minor changes are reducing the probability of moving to
a random position 10% to 5% and the introduction of a
probability of 10% of any action being missing from the
plan. We constructed this environment in such a way that
the three tests are specific cases of this more general train-
ing environment. Our idea is that the agent is trained on
this scenario and then capable of successfully executing
plans on any of the previous three.
Unachievable plan states and missing actions are similar

in that each must deviate from the plan for a short time in or-
der to continue. The scenarios differ in whether the original
actions of the plan are still valid. This difference is signifi-
cant when evaluating agents that have been trained to specif-
ically follow those actions.

To generate an initial plan between 4 and 16 random ob-
stacles are generated at random, which we refer to as imag-
inary obstacles. Imaginary obstacles cause the plan to dif-
fer from the optimal goal-achieving behaviour. They are not
seen during plan execution and simulate differences between
the planning model, the real environment, and the prefer-
ences of the user who generated the plan.

An observation consists of the current state and planned
states. The current state is encoded as a 10×10 integer array
in which the position of the agent is value 1 and the goal
value 2. The 8 × 8 area is surrounded by a boundary wall
of value 3. Obstacles inside boundary have value 4. For the
planned states, we only send the dynamic state, which in
this case is the position of the agent. This is represented as
coordinates x, y ∈ [0, 9].

For the soft metrics, we define a distance function γ as:

γ(se, sp) =
√
(xe − xp)2 + (ye − yp)2 (10)

where xi, yi are the coordinates of the agent’s position in
state si.

5.2 Performance Results
The results over 10000 evaluation episodes are shown as vi-
olin plots, where each third of the plot presents one of the

evaluation functions over the different test scenarios. For Γp

and Γg higher is better, with the optimal value being 1. For
Γn lower is better, with the optimal value as 0.

In figure 3 we present the results for each agent trained
and evaluated on the non-deterministic scenario. Surpris-
ingly, the final step reward function Rf

p outperforms the
other agents, not only with respect to its metric Γp, but both
other metrics. This could be due to the nature of our eval-
uation domain, in that actions are reversible - this means
achieving every plan state can be done most efficiently by
returning as quickly as possible to the planned trajectory.
With the exception of Rs

n, all agents achieve a mean 75% of
planned states. The results also show that the amount of time
spent outside of the plan is less than 40% in all cases, ex-
cept Rs

n. Finally, the results clearly show that the final state
of the plan is achieved more frequently by the final reward
functions - this is expected as the reward is only given if the
final state is achieved.

In figure 4 we present the results for each agent trained
and evaluated on the scenario with unachievable plan states.
All agents trained on this environment perform more poorly,
with only Rs

p achieving more than 50% of the plan states and
agents spending more than 50% of their time off-plan. This
environment can be considered the hardest environment, as
the agent is given observations of planned states that can-
not be achieved. This could potentially be improved with
hyper-parameter tuning and more training time, as discussed
in the conclusion. Reward Rs

p shows some potential in this
environment, achieving the best performance across all three
metrics. In figure 4 a bi-modal distribution of Γg is more no-
ticeable, although occurs in all of the results. This is due
to the nature of the metric, which either awards maximum
score or nothing.

In figure 5 we present the results for each agent trained
and evaluated on the scenario with missing actions. The bi-
modal distribution of the evaluation function of Rf

p suggests
that the plan is correctly followed, but that there is a roughly
50% chance of the agent to get lost by either repeating states
or moving randomly throughout the map without ending the
episode. This problem is likely due to bias in training and
can be fixed by tuning hyper-parameters. Unlike both pre-
vious scenarios, the reward functions based on minimizing
time spent off the planned trajectory perform the best across
all of the evaluation metrics.

In figure 6 we present the results of the agents trained
on the combined environment and evaluated on the other
scenarios with the metric Γp. This scenario adds complex-
ity that affects training, reducing performance in all agents.
Rs

p showed good performance across all previous scenarios.
This is translated into the combined environment as it out-
performs the other reward functions.

In summary these results imply two important takeaways:
First, the final step reward functions perform better than
expected, despite the sparse reward. This could be depen-
dent on the length of the plans. A future evaluation should
determine how this performance changes with the dura-
tion of plans. Second, learning domain-specific behaviours
leads to a need for domain-specific reward functions that
maximise domain-independent metrics. This manifests in

Figure 3: Performance of agents trained and evaluated on non-deterministic action outcomes with metrics Γn, Γp, and Γg .

Figure 4: Performance of agents trained and evaluated on unachievable plan states with metrics Γn, Γp, and Γg .

R∗
p out-preforming R∗

n functions with respect to Γn, even
though they are designed to achieve a different metric. Fu-
ture work should include understanding the general mapping
between domain-independent metrics and domain-specific
rewards.

5.3 Sensitivity to Visible Plan States
Figure 7 illustrates the performance of the agents trained
using different values of nvps. All are trained on the un-
achievable plan state scenario. The reward function Rs

p was
used as it has the best performance in this scenario. To carry
out the test we chose values nvps ∈ {1, 5, 11}, as the mini-
mum, half mean plan length (rounded down), and mean plan
length, respectively. The results clearly show that nvps = 5
performed best. The expected maximum number of consec-
utive blocked states Emax(Bs) = 2, and so observing fewer
planned states than this provides little information to the
agent as to how it might rejoin the plan. A much larger ob-

servation (up to the mean plan length) intuitively should pro-
vide better performance, but in practice it does not. The more
complex observation requires more training time to obtain
the same performance. The best value for nvps will depend
upon the complexity of the domain, the expected maximum
deviation from the planned trajectory, and also the length of
training time.

The results obtain point to fact that a plan recovery agent
based on reinforcement learning is feasible

6 Conclusion
In this paper we discussed evaluation metrics for plan fol-
lowing and evaluated reinforcement learning rewards for a
flexible plan execution agent.

The proposed agents were tested in a set of environments
that simulate different types of plan failure. The results show
that it is feasible to achieve a flexible plan execution agent
based on RL. Improvement in performance can be achieved

Figure 5: Performance of agents trained and evaluated with missing actions with metrics Γn, Γp, and Γg .

Figure 6: Performance of agents trained on the combined scenario and tested on each scenario with metric Γf
p .

by a more in-depth investigation in hyper-parameter tuning
to reduce the bias in learning and improve variation without
harming the sample efficiency.

This paper presents a first step for which there are several
exciting directions for future work, including: (i) defining a
general form for the state distance measure; (ii) estimating
maximum expected blocked states or maximum deviation in
general planning problems; (iii) mapping between general
plan execution metrics to domain-specific rewards; and (iv)
applying the current implementation to more complex plan-
ning domains.

References
Agostinelli, F.; Mcaleer, S.; Shmakov, A.; Fox, R.; Valtorta,
M.; Srivastava, B.; and Baldi, P. 2021. Obtaining Approxi-
mately Admissible Heuristic Functions through Deep Rein-
forcement Learning and A * Search. In Bridging the Gap
Between AI Planning and Reinforcement Learning (PRL).

Borrajo, D.; and Veloso, M. 2021. Computing Opportunities
to Augment Plans for Novel Replanning during Execution.
In Biundo, S.; Do, M.; Goldman, R.; Katz, M.; Yang, Q.;
and Zhuo, H. H., eds., Proceedings of the Thirty-First Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS 2021, Guangzhou, China (virtual), August 2-13,
2021, 51–55. AAAI Press. URL https://ojs.aaai.org/index.
php/ICAPS/article/view/15946.

Bryce, D. 2014. Landmark-based plan distance measures
for diverse planning. Proceedings International Confer-
ence on Automated Planning and Scheduling, ICAPS 2014-
January(January): 56–64. ISSN 23340843.

Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; and Rid-
der, B. 2018. Opportunistic Planning in Autonomous Under-
water Missions. IEEE Transactions on Automation Science
and Engineering 15(2): 519–530.

Cushing, W.; Benton, J.; and Kambhampati, S. 2008. Re-

Figure 7: Performance of agent trained with Rs
p and evaluated on unachievable plan states with different values of nvps.

planning as a Deliberative Re-selection of Objectives. Tech-
nical report, Arizona State University CSE Department.

Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006a. Plan
stability: replanning versus plan repair. In Proceedings of
International Conference on AI Planning and Scheduling
(ICAPS).

Fox, M.; Gerevini, G.; Long, D.; and Serina, I. 2006b.
Plan stability: Replanning versus plan repair. In Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 212–221.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning - theory and practice. Elsevier. ISBN 978-1-
55860-856-6.

Illanes, L.; Yan, X.; Icarte, R. T.; and McIlraith, S. A.
2020. Symbolic Plans as High-Level Instructions for Re-
inforcement Learning. In Proceedings of the 30th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 540–550. AAAI Press.

Iocchi, L.; Jeanpierre, L.; Lazaro, M.; and Mouaddib, A.-I.
2016. A Practical Framework for Robust Decision-Theoretic
Planning and Execution for Service Robots. In Proceedings
of the International Conference on Automated Planning and
Scheduling, 486–494.

Jiménez, S.; Fernández, F.; and Borrajo, D. 2013. Integrating
planning, execution, and learning to improve plan execution.
Computational Intelligence 29(1): 1–36. ISSN 08247935.

Kővári, B.; Hegedüs, F.; and Bécsi, T. 2020. Design of a re-
inforcement learning-based lane keeping planning agent for
automated vehicles. Applied Sciences (Switzerland) 10(20):
1–24. doi:10.3390/app10207171.

Mausam; and Kolobov, A. 2012. Planning with Markov De-
cision Processes: An AI Perspective. Synthesis Lectures on
Artificial Intelligence and Machine Learning 6(1): 1–210.
doi:10.2200/S00426ED1V01Y201206AIM017.

Mnih, V.; Badia, A. P.; Mirza, L.; Graves, A.; Harley, T.; Lil-
licrap, T. P.; Silver, D.; and Kavukcuoglu, K. 2016. Asyn-
chronous methods for deep reinforcement learning. 33rd In-
ternational Conference on Machine Learning, ICML 2016
4: 2850–2869.
Ribeiro, T.; Cashmore, M.; Micheli, A.; and Ventura, R.
2021. Olisipo : A Probabilistic Approach to the Adaptable
Execution of Deterministic Temporal Plans. In TIME Inter-
national Symposium on Temporal Representation and Rea-
soning, 1–11.
Saint-guillain, M.; Vaquero, T. S.; and Chien, S. A. 2021.
LILA : Optimal Dispatching in Probabilistic Temporal Net-
works using Monte Carlo Tree Search. In Fifth ICAPS Work-
shop on Integrated Planning, Acting, and Execution (IntEx).
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv 1–12.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning
: an introduction. Westchester Publishing Services, second
edi edition. ISBN 9780262039246.

