
Towards Automatic State Recovery for Replanning

Stefan-Octavian Bezrucav*1, Gerard Canal*2, Andrew Coles2, Michael Cashmore3, Burkhard
Corves1

1 Institute of Mechanism Theory, Machine Dynamics and Robotics, RWTH Aachen University
2 Department of Informatics, King’s College London

3 Department of Computer and Information Sciences, University of Strathclyde

Abstract
Integrated planning and execution on embodied agents nec-
essarily means dealing with execution failures, and it is com-
mon to employ on-board replanning to overcome such fail-
ures. However, describing the activities of the agent as action
definitions appropriate for planning often requires a discrete
abstraction of continuous state. As a result, action failure can
result in “improper” planning states that are inconsistent with
the ground truth. Attempting to generate a plan in these states
can result in planning failure, even in cases where the execu-
tive actually has the capability to reach the goal.
In this paper, we formalize the concept of proper states, the
mappings between planning states and underlying execution
structures, and lay the grounds towards developing automatic
recovery behaviors when execution failures leave the execu-
tion in an artificially incorrect planning state.

Introduction
Planning is used to generate and order a set of actions re-
quired to transform a given system from an initial state to
a state where some goals are achieved. The real world is
complex, and in order to make the problem manageable the
model used for planning is an abstraction. Often the plan-
ning problem includes a discrete representation of what is in
reality a continuous space. In addition, lower-level executors
must be implemented for each action to execute the plan,
which might also abstract the problem into a discrete space.

As the planning and the execution levels might work with
different representations of the scenario (e.g., in granular-
ity and abstraction level of the state spaces), discrepancies
might occur between them, especially when execution fails.
This paper introduces a formal method for handling these
discrepancies and to enable replanning in case that an ac-
tion fails. In this paper, we consider only planning prob-
lems formulated in the Planning Domain Definition Lan-
guage (PDDL) (Fox and Long 2003).

Figure 1 shows an example of the planning and execu-
tion processes in different state spaces, levels of granular-
ity, and abstraction. First, task planning is performed on
a highly abstract representation of the scenario. Only rele-
vant state space details such as the two possible locations
are encoded in the planning problem, while the continu-
ous space between them is not modelled. On the planning

*These authors contributed equally.

Planning Level

Execution Level

Execution Sub-Level

ai

si1 si2 si3

Figure 1: Planning and execution on different levels of ab-
straction and the mappings between them.

level, the plan has one move action. On the execution level,
each of the high-level actions is described by a Finite State
Machine (FSM), with its associated state-space representa-
tion. In this case, the move executor contains two navigation
states. These FSMs encode more information about the ac-
tion, but they are formulated only for one part of the scenario
(e.g. for one action). The execution of an action can then be
described on more levels.

The low-level executors will achieve parts of the planning
action’s effects during the execution rather than applying the
effects at start or at end as it happens in temporal planning
(or all of them at end of the action as in classical planning).
Thus, planning and execution with different levels of ab-
straction becomes challenging when errors occur during the
execution of an action. In such cases, the typical “plan-fail-
replan” loop might break since a replan may happen when
only a part of the expected effects have been applied. This
may result in inconsistent or improper planning states that
may prevent the planner from finding other viable solutions.

In this paper, we formalize the problem of inconsistent
states that can appear in PDDL planning and execution in
different state spaces. We define states that allow replanning
to be performed when a low-level executor has failed. The

proposed approach also defines mappings between the plan-
ning and the execution levels. These mappings allow to stat-
ically check where an interrupted execution would lead to an
unrecoverable state from the planning level. This methodol-
ogy aims to increase the robustness of plan execution.

Related work
Suitable approaches for generating a new plan when the
actual one either has failed or the goals have changed
have been analysed in many works in literature. Nebel and
Koehler (1995) compared the advantages of replanning from
scratch and of reusing information from the old plan to gen-
erate a new one, when this old plan does not anymore cor-
respond to the planning scene. The theoretical analysis of
the authors showed that the second solution, although more
intuitive, is not necessarily more computation effective. The
work of Fox et al. (2006) argues that plan repair strategies
can be developed that generate plans more efficiently than
a replan strategy. Further, such repair approaches help to
maintain the plan stability, that is, how close the newly gen-
erated plan is to the one that it must replace. Further results
show that, in practice, plan adaptation can be more effective
than re-planning (Gerevini and Serina 2000; van der Krogt
and de Weerdt 2005; Cushing, Benton, and Kambhampati
2008). However, the proposed approaches deliver good re-
sults especially when the new initial and the goal states do
not drastically change. Further, most approaches modify the
planning strategies within existing planners.

An alternative to modifying the planning strategies within
the planners is to incorporate the planner in a framework.
This framework integrates the planning and execution in a
control loop and coordinates the replanning procedures. A
replan means a new call to the same, unmodified planner
for a different planning situation. To work properly, these
frameworks must be implemented such that the planning and
execution representations of the world can be mapped one to
another.

Dvorak et al. (2014) introduce the Flexible Acting and
Planning Environment. This framework combines plan-
space planning approaches with simple temporal networks
and hierarchical decomposition rules allowing plan repair,
extension, and replanning, while being able to check and
keep up to date temporal relations and constrains consump-
tion. This work also contains a dispatcher that calls for each
planned action a set of skills and tracks their evolution over
time. The skills are functions that can process input data and
compute commands for the actuators.

Buksz et al. (2018) propose a two-level hierarchical plan-
ning approach to achieve long autonomy in scenarios with
underwater vehicles. In the first step of their approach, the
set of all goals for a mission is split in n clusters. For each
cluster, a plan is generated. The plan generation for a set of
sub-goals is called the tactical planning. The tactical plans
are then used on the higher-level planning, called the strate-
gic planning. The initial and goal states of the tactical plans
are directly mapped to states on the strategic level. However,
they do not consider any recovery procedures in case of fail-
ures on any of the planning levels.

To enforce the consistency between the planning and exe-
cution representations, Cashmore et al. (2019) proposes the
concept of bail-out actions for planned actions that are not
executed as expected. The bail-out actions can be seen as
recovery procedures on the execution level (e.g., of a nav-
igation action) that force the system to a state from which
planning can continue. A similar concept for recovery proce-
dures for Pentri-Net plans is presented in (Iocchi et al. 2016).

Bezrucav and Corves (2020) introduced the Three-Level
Planning Approach for scenarios with collaborating humans
and robots. On the first level, all goals of the scenario plan-
ning problem are clustered. On the second level, temporal
planning is deployed for each cluster of goals, while on the
third level, FSMs map each temporal action to low-level
commands (e.g., calls to a path planner). Their work also
contains recovery approaches on the third level in case that
errors occur during the execution of the planned actions. A
failure in the execution of one of the low-level commands
implies an error in one state of a FSM. To guarantee that in
case of a failure any executor (e.g. FSM) brings the system
to a state from which replanning on the second level is pos-
sible, all executors have one special characteristic: they can
end in their start state, their goal state, or in an error state.
The first two states allow the mapping of a third-level state
to a second level state (e.g. the temporal planning state) from
which replanning is possible. However, their recovery pro-
cedure is limited by the specific end states allowed for the
executors (e.g. FSMs).

All works presented in this section only address parts of a
generic approach that identifies the valid states for the given
initial state and planning domain and enables replanning.

Background
Automated planning with PDDL (Fox and Long 2003), or
related formalisms, discretises the events in the continuous
time signal. For instance, durative actions may have effects
at the beginning or ending of the execution, while classical
planning assumes all effects at the end. In reality, though,
effects will happen along the execution of the action. There-
fore, in case of an execution failure, some effects may not be
set as planned. In that case, the system can result in a state
that is not consistent with the states expected by the planner.
When this happens, the planner may not be able to find any
solution when replanning to the same or new recovery goals.

An example of this is that of a robot moving. A naviga-
tion action is usually modelled (in temporal planning) with a
precondition of the robot being in a location, an initial effect
of the robot not being in that location, and an ending effect
of the robot being in a new location. However, planning-
wise, the robot is nowhere during the action execution, as it
is moving between the two places. Thus, if the action fails
after the robot leaves the initial location and before it reaches
the goal location, the system ends in an improper state. If
the planning domain contains only the navigation action as
described above, the planner will not find a new plan, as
moving would require for the robot to be somewhere. But
the robot is nowhere in the updated planning state after the
failed execution, although it has not disappeared in the real
world. This is an example that clearly shows the limitations

of the model, where some planning states may not represent
reality. We consider those states to not be proper states.

The notion of state invariants will be used to define and
compute when a state is proper. Following Rintanen (2000)
and Lipovetzky, Muise, and Geffner (2016), we define state
invariants in the context of automated planning formulated
in PDDL as follows.
Definition 1. A state invariant is a formula that is true in all
states that can be reached from a given initial state, given a
set of operators from a planning domain.

State invariants can be statically inferred from a plan-
ning domain and an initial state, for instance, by using the
Type Inference Module (TIM) introduced by Fox and Long
(1998). An example of such an invariant is the at predicate
from a navigation planning problem. In all expected states
of the planning domain, if no actions are executing, the in-
variant i1 = |at(robot)| = 1 holds. This means that the
robot is exactly at one location in each of these states. These
invariants are used in the following section to introduce the
concept of proper states.

Proper States and Execution Mappings
With the focus set on planning, we formalize the concept of
proper states and their mappings to different levels of execu-
tion granularities. We define a planning problem as:
Definition 2. A planning problem Π is a 4-tuple Π =
⟨S,A, s0, g⟩ where S is a finite set of states (both boolean
predicates and numerical fluents), A is a finite set of actions
where every action a ∈ A has some preconditions apre and
effects aeff = ⟨aadd , adel⟩, s0 ∈ S is the initial state, and g
is a set of goals. A solution to the planning problem is a plan
π containing a set of grounded actions ai ∈ A that bring the
system from s0 to a goal state in which the goals from g hold.

Given a set of invariants I for a planning problem Π, we
define a proper state as follows.
Definition 3. A state sp ∈ S in a planning problem Π =
⟨S,A, s0, g⟩ is a proper state if it satisfies all invariants in I
that are also satisfied in the initial state s0.

In this context, a improper state is a state in which some
of the invariants are violated. From such a state, planning
could be performed, but either no plans would be found or
any found plans would not correspond to the logic described
in the planning problem. In contrast, a proper state is a state
that still fits in the logic described in the planning problem.
Therefore, the execution procedures of each planned action
must guarantee that the system always ends1 in a proper state
to increase the chances of a successful replanning.

Plan executors tend to be layered, with every action in the
plan being executed by a lower-level representation that at
the same time may be an abstraction of an even lower-level
representation. Such underlying representations may also be
state-based. As an example, the executor of a planning ac-
tion may be a Finite State Machine (FSM), or even another
planning problem that tackles the specific action of top-level
planning problem (Buksz et al. 2018).

1Ending as in stops after a failure, before replanning.

Given the lower-level execution representations of the ac-
tions, we define a mapping between states in the different
representational layers.

Definition 4. Given a planning problem Π = ⟨S,A, s0, g⟩
with a set of proper states S+ ⊆ S, and an underlying state-
based execution representation consisting of a state space
U , a proper mapping is a function M : U → {S+,⊥} that
maps execution states to planning proper states, or ⊥ if the
execution state corresponds to a improper state.

Without loss of generality, we focus on the case of having
an FSM representing the underlying action execution.

Definition 5. A deterministic Finite State Machine (FSM)
is a 5-tuple ⟨Σ, S̄, s̄0, δ, F ⟩ where Σ is the input alphabet
(finite set of symbols), S̄ is the finite set of states, s̄0 ∈ S̄ is
an initial state, δ : S̄×Σ → S̄ is a state-transition function,
and F ⊆ S̄ is the set of final states.

We extend the FSM definition by labeling the transitions
with partial effects of the planning action they represent.

Definition 6. A planning executor Finite State Machine
(eFSM) ⟨Σa, S̄a, s̄a0

, δa, Fa, Ea⟩ is an FSM that executes
some planning action a, and whose transitions are labeled
by a subset of the action’s effects aeff . The transition func-
tion for an eFSM is then defined as δa : S̄a×Σa → S̄a×Ea,
where Ea = {⟨p, d⟩ | p ∈ P(aadd) ∧ d ∈ P(adel)}, where
P(·) denotes the powerset.

Zero or more effects of action a may be assigned to each
transition, as described in the extended state transition func-
tion δa. When an eFSM transition from s̄a,i ∈ S̄ to s̄a,j ∈ S̄
is not labeled with any effect from a, the resulting state
s̄a,j ∈ S̄a will have the same mapping as s̄a,i ∈ S̄a. This
is because the granularity of the different state space repre-
sentations is different. Therefore, while the eFSM state may
have transition, the planning state may have not changed.
In this context, the set U in Definition 4 is equivalent to an
eFSM state space S̄a.

Analysing Execution State Spaces
In this section, we formulate a theorem to show the applica-
tions of proper states and eFSMs in integrated planning and
execution approaches for real world scenarios.

Theorem 1. If the eFSM ⟨Σa, S̄a, s̄a0
, δa, Fa, Ea⟩ of any

action a ∈ A of a planning problem Π = ⟨S,A, s0, g⟩ has
final states s̄a ∈ Fa for which the mapping M(s̄a) = s, s ∈
S+ exists, then the execution of the plan is guaranteed to
always end in a proper state.

Proof. Each plan π for a planning problem Π has a set
of grounded actions Af after which no further action is
planned. If the plan is sequential, the set Af has only one ac-
tion. If the plan contains concurrent actions, the set Af may
have more than one element. If the eFSMs of all actions in
the planning model a ∈ A end in execution states that map
to proper states, then all actions af ∈ Af must end in execu-
tion states that are mapped to proper states si ∈ S+. Given
that the invariants I hold in each si, they will also hold in the
state reached when all actions af ∈ Af have finished. Thus,

the final execution state will also be a proper state regardless
of the execution outcome (success or failure).

The execution of the plan can end not only when every
action is carried out as expected, but also when an execution
error occurs. In this case, all other actions that were execut-
ing at the time point when the error occurred should continue
as planned.

The proposed formalizations provide a framework for in-
creased execution robustness, allowing executors to be stat-
ically checked. In the eFSM executor case, robustness can
be improved by ensuring all eFSM’s final states have a de-
fined mapping to a proper planning state. Our formalization
can be used to check if final states have this defined map-
ping and to prompt the user when final eFSM states could
end up in improper planning states so that they add recovery
transitions.

Application Example and Discussion
In this section, we present our approach on a realistic plan-
ning problem Πrob for a robotic application. The PDDL
planning domain for Πrob contains three actions: navigate,
grasp, and place, with corresponding predicates and type
definitions. The definitions of actions navigate and grasp are
presented in Figure 2.

(:durative-action navigate
:parameters (?v - robot ?from
?to - waypoint)
:duration(= ?duration 3)
:condition (and
(at start (robot_at ?v ?from)))

:effect (and
(at start (not (robot_at ?v ?from)))
(at end (robot_at ?v ?to))))

(:durative-action grasp
:parameters (?v - robot ?p - object
?place - waypoint)
:duration(= ?duration 2)
:condition (and
(over all (robot_at ?v ?place))
(at start (robot_at ?v ?place))
(at end (robot_at ?v ?place))
(at start (object_at ?p ?place))
(at start (stowed ?v))
(at start (empty_gripper ?v)))

:effect (and
(at start (not (object_at ?p ?place)))
(at start (not (empty_gripper ?v)))
(at start (not (stowed ?v)))
(at end (stowed ?v))
(at end (object_at ?p ?v))))

Figure 2: Definition of the durative-actions from the plan-
ning domain of Πrob
.

The PDDL planning problem for Πrob contains the initial-
ization of the robot, the object, and five waypoints. Beside
these, the PDDL planning problem also contains the initial
and goal states (see Figure 3).

(:init
(robot_at robot wp1)
(object_at obj wp3)
(stowed robot)
(empty_gripper robot))

(:goal (and
(object_at obj wp5)
(robot_at robot wp2)))

Figure 3: Initial state and goals for Πrob.

Following, we perform a TIM (Fox and Long 1998) anal-
ysis on the planning problem Πrob to determine the state in-
variants I . Based on these state invariants, we create eFSMs
that will make the execution more robust, and will not allow
the system to drift to an improper state. Figure 4 shows an
excerpt of TIM’s output that encode the invariants I .

{} => {robot_at_0 } -> {navigate_0 } → i1
{} => {navigate_0 } -> {robot_at_0 } → i1
{} => {object_at_0 } -> {grasp_1 } → i2
{} => {grasp_1 } -> {object_at_0 } → i2
{} => {object_at_0 } -> {place_1 } → i3
{} => {place_1 } -> {object_at_0 } → i3
{robot_at_0 } =>
{stowed_0 ...}->{grasp_0} → i4
{robot_at_0 } =>
{grasp_0}->{stowed_0 ...} → i4

Figure 4: Snippets of the output delivered by TIM for the
planning problem Πrob.

The first line from Figure 4 can be interpreted as follows:
when the robot at predicate holds for its first parameter (0th
in TIM’s output), the navigate action can be applied and
its first parameter is the same as the first parameter of the
robot at predicate (e.g., robot). The first and the second line
can be interpreted together as: when the robot at predicate
holds for its first parameter and the action navigate is ap-
plied, in the obtained state, the predicate robot at should also
hold for the same parameter. These two lines represent the
first invariant i1 that says that the predicate robot at should
hold for a parameter of type robot throughout all the execu-
tion of the navigate action. Invariants i2− i4 are determined
in a similar manner. They imply that the predicate object at
must hold for an object all the time during the execution of
the grasp and place actions (i2 and i3), while the arm must
also be stowed during the grasp action (i4). If all these in-
variants hold when no actions are executing, then the state
remains proper and replanning is more likely to succeed. To
ensure this, specific eFSM must be created for the three ac-
tions.

The navigate action is implemented on the execution level
by an eFSM with three states (see Figure 5). The initial state
s̄nav1 is the start state where the robot is at wp−from. s̄nav2

is the state obtained if the navigator (e.g. implemented with
a path planner) is successful and the agent reaches wp− to.
The transition connecting these two states has two effects.
One effect deletes the fact that the agent is at wp − from,

s̄nav1

s̄nav2

s̄nav3

del robot at(agent,wp-from)

add robot at(agent,wp-to)

del robot at(agent,wp-from)

add robot at (agent,wp-to)

Figure 5: The original eFSM representation and its exten-
sion with the dashed transitions to guarantee that all its final
states can be mapped to planning proper states.

while the second effect adds the information that the agent is
at wp− to. s̄nav3 is the third execution state that is reached
when the underlying navigation action (e.g. a path planner)
fails. The transition connecting s̄nav1 to s̄nav3 has attached
only an effect that deletes the information of the agent being
a wp− from.

With the original eFSM, the execution of the navigate ac-
tion can end in state s̄nav3 for which invariant i1 does not
hold anymore. Thus, the system would reach an improper
state after failure. To ensure that the navigate eFSM can end
only in proper states, this eFSM must be extended with two
further transitions. One transition is added between s̄nav3

and s̄nav2
and it describes the case when a newly triggered

navigation command finishes successfully. In this case, the
system lands in state s̄nav2

and the robot at effect must be
added. If the second navigation command does not execute
as expected, the system remains in the improper state s̄nav3 ,
as described by the second dashed transitions. With the two
new transitions, the navigate eFSM has only one end-state,
namely s̄nav2 that maps to a planning proper state. Figure 5
shows the original representation of the eFSM and its exten-
sions (e.g. dashed transitions).

We now show another example using the grasp action.
Here, invariants i2 and i4 should hold. Figure 6 presents
the execution of action on the planning level with the evolu-
tion of the grounded predicates in the planning state. These
grounded predicates change when the corresponding add
and delete effects from the grasp action are applied. On the
execution level, the grasp action is first implemented with
an eFSM with four states (in blue):

• s̄grasp0 is the initial state
• s̄grasp1

is the state reached after the object is approached
• s̄grasp2

is the state reached after the gripper is closed
• s̄grasp3 is the state reached after the arm is stowed.

The action effects from the planning level are applied on
the transitions between these eFSM states, as shown in the
lower level of Figure 6.

If the eFSM approach object action fails, the robot can
not further grasp the object, thus, it can not continue with the
initial plan. The system would remain in the execution state
s̄grasp1

, where the object is nowhere, the arm is not stowed,

and a replanning is required. In order to prevent the sys-
tem reaching an improper state, the status of the invariants
must be checked before replanning. Although the grasp ac-
tion has completed on the planning level, the object at pred-
icate for the obj and the stowed arm predicate were deleted
from the state during the action execution and were not set
up again due to the failure. Thus, invariants i2 and i4 do not
hold in the resulting state, which means s̄grasp1

is improper.
To avoid such behaviours, the eFSM for the grasp action
is extended with two further states (represented in green in
Figure 6). s̄grasp4 is reached from s̄grasp1 after an object
detection action is executed, while s̄grasp5 is reached from
s̄grasp4

after a stowing arm action is carried out. The tran-
sitions between the new introduced states also reset corre-
sponding predicates, and a transition between states s̄grasp5

and s̄grasp0
is also added. With the new eFSM, the execu-

tion of the grasp action becomes more robust. In case that
approaching the object action fails, a recovery procedure
is now available that updates the state of the world on the
planning level, such that a proper state (e.g., s̄grasp0) can be
reached, where the predicates object at obj and stowed arm
hold. Therefore, invariants i2 and i4 also hold, which means
that the state is proper and replanning is possible. However,
the extended eFSM is not yet complete. If the object is not
detected or the arm can not be stowed after a failure of the
approach object action, the system may still result in im-
proper states.

Concluding, the presented approach can be used to im-
prove the execution robustness of any planning problem.
This improvement is achieved by checking for the execu-
tors of all actions a ∈ A of Π, if they satisfy the invariants
and are able to repair the improper states of the planner’s
model that do not accurately match a real ground truth. Here,
we propose to use the concept of proper states and invari-
ant checks as an assisting tool (similar to the automatic plan
validation tool VAL (Howey, Long, and Fox 2004)) to check
the completeness of the actions’ execution description, and
to devise potential executor errors.

Conclusions and Future Work
This paper presents a formalization towards making inte-
grated planning and execution approaches for embodied
agents more robust against execution failures. The main con-
tributions are the definition of the proper states on the plan-
ning level and the mapping between states from the planning
and the execution levels. The proposed formalization pro-
vides a framework to check if execution representations may
result in an artificial dead-end from which planning cannot
continue, paving the way towards automatic recovery behav-
iors of such kinds of failures. Here, we have proposed man-
ual extensions of the eFSMs to recover from improper states.

In future work, we will look into the automatic extension
of eFSMs such that all their final states can be mapped to
proper planning states, ensuring the ability of continue with
planning when execution fails. This will imply determining
the missing predicates to reach a planning proper states from
a failed state and the generation of appropriate transitions
that recover the planning state.

Planning

Execution
(eFSM)

(grasp robot obj)
start

(grasp robot obj)
end

(robot_at robot table)
(object_at obj table l1)
(stowed_arm)
(empty_gripper)

(robot_at robot table)
not (object_at obj table l1)
(object_at obj robot)
(stowed_arm)
not (empty_gripper)

not (object_at obj table l1)
not (stowed_arm)

(stowed_arm)(object_at obj robot)

(object_at obj table l1)
(stowed_arm)

approach object close gripper stow arm

detect object
stow arm

s̄grasp0
s̄grasp1

s̄grasp2
s̄grasp3

s̄grasp4s̄grasp5

Figure 6: Example of mapping between planning and execution levels in the context of a grasping action. We include states
which would not be proper and potential recovery behaviors.

Acknowledgements
This work has been partially supported by the European
Union’s Horizon 2020 project Sharework (grant agreement
No. 820807). Gerard Canal is supported by the Royal
Academy of Engineering and the Office of the Chief Sci-
ence Adviser for National Security under the UK Intelli-
gence Community Postdoctoral Research Fellowship pro-
gramme.

References
Bezrucav, S.-O.; and Corves, B. 2020. Improved AI Plan-
ning for Cooperating Teams of Humans and Robots. In
Workshop on Planning and Robotics (PlanRob) at the
30th International Conference on Automated Planning and
Scheduling. 10.5281/zenodo.4286242.

Buksz, D.; Cashmore, M.; Krarup, B.; Magazzeni, D.;
and Ridder, B. 2018. Strategic-Tactical Planning for Au-
tonomous Underwater Vehicles over Long Horizons. In
2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 3565–3572. IEEE. ISBN 978-
1-5386-8094-0.

Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Maga-
zzeni, D.; and Ruml, W. 2019. Replanning for Situated
Robots. In Benton, J.; Lipovetzky, N.; Onaindia, E.; Smith,
D. E.; and Srivastava, S., eds., Proceedings of the Twenty-
Ninth International Conference on Automated Planning and
Scheduling, 665–673. AAAI Press.

Cushing, W.; Benton, J.; and Kambhampati, S. 2008. Re-
planning as a Deliberative Re-selection of Objectives.

Dvorak, F.; Bartak, R.; Bit-Monnot, A.; Ingrand, F.; and
Ghallab, M. 2014. Planning and Acting with Temporal and

Hierarchical Decomposition Models. In 2014 IEEE 26th In-
ternational Conference on Tools with Artificial Intelligence,
115–121. IEEE. ISBN 978-1-4799-6572-4.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
Stability: Replanning Versus Plan Repair. In Long, D.;
Smith, S. F.; Borrajo, D.; and McCluskey, L., eds., Proceed-
ings of the Sixteenth International Conference on Automated
Planning and Scheduling, 212–221. AAAI Press. ISBN 978-
1-57735-270-9.
Fox, M.; and Long, D. 1998. The Automatic Inference of
State Invariants in TIM. Journal of Artificial Intelliigence
Research, 9: 367–421.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research (JAIR), 20: 61–124.
Gerevini, A.; and Serina, I. 2000. Fast Plan Adaptation
through Planning Graphs: Local and Systematic Search
Techniques. In Chien, S. A.; Kambhampati, S.; and
Knoblock, C. A., eds., Proceedings of the Fifth International
Conference on Artificial Intelligence Planning and Schedul-
ing, 112–121. International Conference on Artificial Intelli-
gence Planning and Scheduling, AAAI Press. ISBN 978-1-
57735-111-5.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: automatic
plan validation, continuous effects and mixed initiative plan-
ning using PDDL. In 16th IEEE International Conference
on Tools with Artificial Intelligence, 294–301. ISBN 0-7695-
2236-X.
Iocchi, L.; Jeanpierre, L.; Lazaro, M.; and Mouaddib, A.
2016. A Practical Framework for Robust Decision-Theoretic
Planning and Execution for Service Robots. In Coles, A.;
Coles, A.; Edelkamp, S.; Magazzeni, D.; and Sanner, S.,

eds., Proceedings of the Twenty-Sixth International Con-
ference on Automated Planning and Scheduling, 486–494.
AAAI Press. ISBN 978-1-57735-757-5.
Lipovetzky, N.; Muise, C.; and Geffner, H. 2016. Traps, In-
variants, and Dead-Ends. In Coles, A.; Coles, A.; Edelkamp,
S.; Magazzeni, D.; and Sanner, S., eds., Proceedings of the
Twenty-Sixth International Conference on Automated Plan-
ning and Scheduling. AAAI Press. ISBN 978-1-57735-757-
5.
Nebel, B.; and Koehler, J. 1995. Plan reuse versus plan gen-
eration: a theoretical and empirical analysis. 76(1-2): 427–
454. PII: 000437029400082C.
Rintanen, J. 2000. An Iterative Algorithm for Synthesizing
Invariants. In Seventeenth National Conference on Artifi-
cial Intelligence (AAAI-2000), Twelfth Innovative Applica-
tions of Artificial Intelligence Conference (IAAI-2000), 806–
811. American Association for Artificial Intelligence and In-
novative Applications of Artificial Intelligence Conference,
AAAI Press and MIT Press. ISBN 978-0-262-51112-4.
van der Krogt, R.; and de Weerdt, M. 2005. Plan Repair as an
Extension of Planning. In Myers, K.; Rajan, K.; and Biundo,
S., eds., Proceedings, the fifteenth international conference
on automated planning and scheduling. AAAI Press. ISBN
978-1-57735-220-4.

