
A System for Lifelong, Resilient, Job Shop Planning based on Learning Machine
Capabilities from Operational Data

Roni Stern, Wiktor Piotrowski, Lara S. Crawford, Michael Youngblood
Palo Alto Research Center (PARC)

Abstract

We describe the design of a system that learns the capabilities
of machines in the factory from available operational data,
and uses the learned capability model to plan how to allocate
jobs to machines over time. The described system is designed
to be resilient to faults and machine performance degrada-
tion by including a component that detects such abnormal be-
haviors, diagnoses their root cause, and adapt the machines’
capability models accordingly. These system abilities allow
the factory to continue to operate and utilize machines whose
performance has been degraded, thereby increasing the fac-
tory’s overall utilization. In this paper, we describe a refer-
ence implementation of such a system based on two publicly
available datasets from different factory types: an ion milling
factory and a CnC machining factory.

Introduction
Many production factories rely on a planner — either hu-
man or automated — to efficiently allocate jobs to machines
in order to maximize throughput and factory productivity.
That planner is usually faced with a variant of the following
setup. The factory consists of a set of machines, possibly of
different types, which are used to perform a given sequence
of tasks. To perform a task, the machines in the factory need
to perform a set of operations. The goal of the planner is to
allocate operations to machines that can perform them while
aiming to optimize some cost function, e.g., machine utiliza-
tion.

Many planning algorithms and systems have been devel-
oped to solve job shop planning problems. However, these
solutions require a human to model the capabilities of the
machines in the factory, i.e., which operations can be done
by which machine and the cost of doing so. Relying on hu-
mans to model machine capabilities in a factory has two ma-
jor limitations. First, modeling by a human is an expensive
task that requires sophisticated expertise as well as an un-
derstanding of the modeling requirements. Second, the ca-
pabilities of a machine may change over time, due to faults
and natural degradation, for example, which requires peri-
odic manual “re-modeling” of the factory to account for the
changes in the machines’ capability models. In general, hav-
ing an up-to-date capability model of a system is often pro-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

hibitively challenging, and is one of the main inhibitors for
the wide spread adoption of model-based approaches to au-
tomated reasoning tasks such as planning and diagnosis in
real factories.

We propose a holistic system design that either com-
pletely avoids or greatly reduces the need for human ca-
pability modeling. In addition, the system we propose au-
tomatically detects and adapt to machine failures and
degradations in performance. Our system includes the fol-
lowing main components:
• Capability learner. This component analyzes available

operation data from the factory and outputs a capability
model for each machine.

• Planner. This component uses the given capability mod-
els to generate plans and schedules for performing jobs
by allocating their constituent operations to suitable ma-
chines.

• Fault detector. This component tracks the execution of
the planned operations and detects when machines fail to
execute operations that were allocated to them.

• Diagnoser. This component diagnoses failures and out-
puts potential changes that should be made to the capa-
bility models.

Each component in our system is driven by different AI
technology. The capability learner applies data analysis
and machine learning techniques to establish the capabil-
ities of each machine. The planner uses automated plan-
ning techniques from the AI literature (Ghallab, Nau, and
Traverso 2016) to solve planning tasks defined by the given
capability model and set of jobs to be performed. Specifi-
cally, it compiles the given planning task to a general plan-
ning problem defined in the standard Planning Domain De-
scription Language (PDDL) (McDermott et al. 1998), and
then uses an off-the-shelf AI PDDL planner to find a so-
lution. The fault detection component can, in general, em-
ploy any type of anomaly detection algorithm (Chandola,
Banerjee, and Kumar 2009) to identify machine failures and
degraded performance. The diagnoser component employs
model-based diagnosis techniques, such as the General Di-
agnosis Engine (GDE) (De Kleer and Williams 1987) and
Conflict-Directed A* (Williams and Ragno 2007), to sug-
gest possible modifications to the capability model that will
explain the observed degraded performance.



Potential Applications
Modeling machine capabilities dynamically using real-time
machine data has applications in any manufacturing context
that exhibits:
• Capability redundancy. This means some operations

can be performed by more than a single machine. That is,
there are redundancies in the set of machines, equipment,
or capabilities, available to perform jobs. Such redundan-
cies can be modeled by our system and leveraged by the
planner.

• Usable degraded-performance machines. This means
some machine fault conditions or health degradations do
not necessarily result in the machine having to be shut
down or taken out of operation. Rather, such machines
may be intelligently managed through factory redundan-
cies and the use of the remaining capabilities of the ma-
chine, until a suitable repair can be scheduled.

In addition, the automated method we propose for modeling
machine capabilities enables automatic usage analysis and
assignment of new jobs to machines, a feature that would
be useful in shops that accept a wide variety of customized
jobs. Thus, this technology is an enabler for on-demand cus-
tomization and more flexible local manufacturing.

Concretely, we identify several industries that match these
criteria:
• Subtractive manufacturing (CnC). CnC machines are

often costly to replace and time-consuming to repair. De-
graded performance such as more coarse cut accuracy
may still be usable to cut some parts but not others, for
example. A fault in one axis may still leave the tool able
to handle tasks that do not require as many degrees of
freedom, as well.

• Hybrid additive and subtractive manufacturing fac-
tories. While such factories are currently not widespread,
they are expected to be suitable applications for our sys-
tem. This is because hybrid machines inherently include
some capability redundancies — some parts can be man-
ufactured either by subtractive or by additive capabilities,
while other parts require both capabilities. Thus, even if,
e.g., the subtractive tools of a hybrid machine are broken,
one could still use that machine for additive tasks.

• Print shops. Print shops have a wide variety of custom
jobs that come in, and potentially several different types
of machines on which they can be run. Many of these
machines will have different capabilities such as different
finishing options, different print qualities, different paper
types, or color vs black and white. If one machine has an
issue with a particular paper tray, for example, it can still
be used for jobs requiring other sizes or types of paper,
and if one machine has an issue with color printing it
might still be usable for black and white.

• Semiconductor manufacturing. The semiconductor in-
dustry has a wide range of manufacturing processes. Our
technology is applicable in multiple aspects of these pro-
cesses. For example, LCD manufacture may involve sig-
nificant automated material transport from one process to
the next. If one of the transport mechanisms were faulted

so as to only be able to move more slowly, the schedule
of the factory could be modified to take this into account,
working around the faulted component where need be.

Related Work
We and others have explored the concept of using capabil-
ity models for dynamic planning to enable reconfigurable
manufacturing (Crawford et al. 2013; Do et al. 2011). Ca-
pability modeling for manufacturing is a challenging topic,
however. There has been interest in the standards commu-
nity in supporting various types of interoperability across
different aspects of factory management, in order to enable
more flexible factories and more advanced analytics, par-
ticularly in machining / subtractive manufacturing (Sprock
et al. 2019). Models of machine tool geometry and kinemat-
ics exist, though most are in proprietary formats, and there
is some effort in tools and standards to allow these models
to be shared across platforms (Bärring et al. 2020). There
have been attempts to create models of machine capabili-
ties that incorporate a more abstract view and include the
capabilities of the controllers as well (Vichare et al. 2009,
2017), but they have not gained general acceptance, nor are
we aware of them being used in a practical demonstration.
There have also been models generated for specific domains
such as robotics (Perzylo et al. 2019). These approaches all
require extensive modeling effort by human experts to define
and implement the capability models.

Our approach to learning capabilities is inspired by prior
work on learning planning action models (Yang, Wu, and
Jiang 2007; Amir and Chang 2008; Cresswell, McCluskey,
and West 2013; Stern and Juba 2017; Aineto, Celorrio, and
Onaindia 2019; Juba, Le, and Stern 2021; Juba and Stern
2022; Segura-Muros, Pérez, and Fernández-Olivares 2021).
Learning planning action models means learning, usually
from observations, a model of the world that enables the
application of automated planning algorithms. For exam-
ple, the FAMA algorithm (Aineto, Celorrio, and Onaindia
2019) accepts a possibly partial view of states and actions
observed while executing plans in a domain, and outputs a
PDDL action model, which is a model that specifies the pre-
conditions and effects of actions. The LOCM family of al-
gorithms (Cresswell, McCluskey, and West 2013; Gregory
and Cresswell 2015) also learns an action model for plan-
ning, but assumes as input only sequences of actions. Most
prior work on learning action models focused on discrete ac-
tion models, but recent work has started to explore learning
temporal and numeric action models using symbolic regres-
sion (Segura-Muros, Pérez, and Fernández-Olivares 2021).
Learning machine capablities can be viewed as an applica-
tion of learning planning action models, where a machine’s
capabilities translates to a set of actions the machine, speci-
fied by their preconditions and effects.

System Design
Figure 1 illustrates the proposed system, depicted in the
block titled “Smart Factories Agent.” The proposed system
is designed to operate for a given factory, which has some
form of “clients.” The proposed system begins by collecting



The Smart Factories Agent

Factory Smart Factory Agent

Machines

Clients PDDL-based Planner

Fault Detection

Diagnoser

Capability Modeling

Capability 

Model
Machine Usage Data

Plan to

execute jobs

Execution logs

Jobs to 

perform

Execution Faults

1

2 3

4

5

Figure 1: Block diagram of the closed-loop system.

and analyzing usage data from the machines in the relevant
factory (“Machine Usage Data” in Figure 1). Then, it runs a
learning algorithm (block 1 in Fig. 1) on this data to auto-
matically create models of the capabilities of the machines
in the factory. This algorithm may also take into account
machine specification information. These capability mod-
els represent the abilities and features of the machines in
the factory, specifying details about the operations each ma-
chine can do. The model captures the abstract information
that an automated reasoning engine requires to determine
whether a job can be assigned to that machine or not. For
example, a capability model may include ranges on physical
parameters, such as a range of speeds that the machine can
achieve. This capability model is used as follows. When the
factory’s clients (block 2 in Fig. 1) submit jobs they wish
to be performed, our system runs a planning algorithm to
automatically create a plan for performing these jobs using
the factory’s machines. To generate appropriate plans, the
planning algorithm needs to know which types of operations
each machine can do. To this end, our system uses the capa-
bility models we learned from data. In particular, our sys-
tem compiles the set of jobs it is tasked to perform and the
learned capability model into planning problem specified in
PDDL. There are many off the shelf algorithms that solve
PDDL problems, and our system is designed to use such
algorithms (block 3 in Fig. 1) to output a plan that speci-
fies which machines do which jobs and when to do so. Our
system also supports generating plans that perform jobs that
require multiple machines to be accomplished.

The agent operating the factory accepts the plan our sys-
tem creates and attempts to execute it.1 The system continu-
ously monitors the usage data generated by the factory’s ma-
chines while executing plans, and applies an anomaly detec-
tion algorithm to detect execution faults (block 4 in Fig. 1).
Since the planner used a learned capability model, a failure
may stem from an incorrect assumption about what a ma-
chine can do. Alternatively, a fault may stem from a degra-
dation of a machine, which affects the capabilities of that
machine. Our system applies a diagnosis algorithm to iso-
late the root cause of the observed failure, suggesting up-
dates to the capability model that would explain the failure
(block 5 in Fig. 1). This allows the system to continue gen-
erating plans for the factory and continuously adapt its capa-

1That agent can either be an automated agent or a human oper-
ator that observes the proposed plan and acts accordingly.

bility models based on what it observes. Next, we describe
the main components of our system, namely, the capability
learner, the planner, the fault detector, and the diagnoser, in
more detail.

Capability Learner
This component accepts as input a machine and operational
data collected from it, and outputs a capability model for
that machine. The capability model of a machine is a model
that represents the set of capabilities that machine has. An
operation can be done by a machine if that machine has the
capabilities required to do it. The representation of a ma-
chine capability depends on the available data and the al-
gorithm used by the capability learner. Below, we specify
several possible approaches for implementing the capability
learner and the corresponding capability models they learn.

First, we introduce the following notation and terminol-
ogy. The available operational data, referred to as the train-
ing set, is represented as a set of time series observed from
each machine. Each element in a time series is an n dimen-
sional vector, whose elements are the values of the observed
operational characteristics (OOC) of a machine at the given
time. We refer to this vector as an OOC vector. For a time se-
ries T we denote by T [i] the ith OOC vector in that time se-
ries, and we denote by T [i][j] the jth element of that vector.
The elements of an OOC vector may include numeric values
such as the rotation speed of a machine. The elements of an
OOC vector may also include non-numeric values defining
the basic machine features, such as what types of swappable
tool tips it can support, or how many axes it has, for CnC
machines. Non-numeric OOCs may also indicate something
about the mode of operation, such as which tool tip is cur-
rently being used.

Capabilities as Ranges of Values for an OOC In this im-
plementation of the capability learner, a machine capability
is the range of values allowed for one of the OOCs of the
machine, e.g., the range of rotation speed values that ma-
chine can operate with. The capability model of a machine
specifies the allowed range of values for each of the n OOCs
of the machine. Correspondingly, the capability learner can
learn these values by tracking the min and max values of the
OOCs in the training set.

If the allowed values for an OOC do not form a con-
nected interval, the corresponding capability can be mod-
eled as multiple disconnected ranges. The capability learner
can learn these ranges by tracking the values of the OOCs in
histograms, for example, and then calculating the minimum
number of disconnected components required for the model.

Capabilities as Multi-Dimensional Convex Hulls of OOC
Values In this implementation of the capability learner, a
machine capability specifies a region of the n-dimensional
space defined by all possible combination of OOC values.
This region specifies the allowed combination of OOC val-
ues that machine can support. According to such a capabil-
ity model, the machine can perform an operation if the OOC
values it requires are within one of the regions defined by its
capabilities.



One way to represent such a capability model is as a set of
multi-dimensional planes that represent a convex area. Cor-
respondingly, the capability learner can learn such an area by
computing the convex hull of all the OOC vectors seen in the
training set. Such a capability learner can employ existing
techniques for computing convex hulls of a set of n dimen-
sional vectors. If n is large, i.e., there is a large number of
OOCs, it may also be desirable to use dimensionality reduc-
tion techniques, such as principle component analysis (PCA)
or autoencoders, to reduce the size of the space to be mod-
eled. This may be particularly useful in cases where large
numbers of the variables are correlated through physical pro-
cesses (current and voltage readings, for example). One may
even consider simply applying a lower dimensionality pro-
jection of the OOC vectors. The resulting low-dimensional
representation can then be used in the capability modeling as
above. Note that including more OOCs, i.e., higher dimen-
sion OOC vectors in the computed capability model may
cause learning to be slower but will make the model less
conservative.

Capabilities as Multi-Dimensional Regions of OOC Val-
ues The assumption that the capabilities can be captured as
a convex region of the n-dimensional space of OOC vectors
may not hold. In some cases, the training set may indicate
that a better capability model can be obtained by splitting
the convex hull of the data in the training set into multiple
pieces, each modeled as a separate achievable region. The
split version can then be tested with the available data to see
whether it now accurately represents the capabilities. One
can alternatively employ clustering algorithms to cluster the
OOC vectors in the training set in regions of the OOC vec-
tor space that are not convex at all, e.g., employing various
kernels.

A related approach to capability modeling is to represent
the achievable combinations of OOCs as joint distributions.
These distributions can be modeled based on observed data,
potentially discounted over time, and approximated so as to
be represented in a compact form. To determine whether a
particular required set of operational characteristics can be
executed on a given machine, the probability density at the
point corresponding to that combination can be examined.
If it is high, then the machine can achieve that operational
characteristic. This approach is similar to the modeling ap-
proach using histograms above, but using a joint distribution
rather than modeling each OOC independently.

Yet another approach is to represent the capabilities of
a machine in a neural network classifier, which would be
trained to indicate whether a particular set of values (or time
series of values) can be achieved on a given machine. This
approach does not provide an explicit representation of ca-
pabilities, but instead directly maps the desired behavior to
yes/no.

Capabilities as Disjunctions over Non-Numeric OOC
Values The non-numeric data in the training set can be
considered in a similar manner, modeling capabilities as a
set of acceptable combinations of values. For example, if
an operational characteristic can take on values “A”, “B”, or
“C”, but only takes on value “A” when a second operational

characteristic takes on value “α”, and otherwise takes on
“B” or “C”, this set of possible combinations can be repre-
sented as a disjunction. The corresponding capability learner
can employ known algorithms for learning a disjunctive nor-
mal form from data (Mansour 1995). A similar technique of
slicing or separating the capability space into multiple re-
gions can be used for this non-numeric data. Models com-
bining numeric and non-numeric data are also possible, of
course.

Capabilities as Patterns in a Time Series Other machine
capability models and learning algorithms are also possi-
ble. These may include other ways of modeling multi-variate
specific execution patterns that a machine can perform, and
then types of tasks it is suitable for. Correspondingly, meth-
ods to implement the capability learner may also include ap-
plying other temporal data mining techniques to infer com-
plex patterns observed in the data. Because the models are
learned based on the observed data, however, if the dataset
is limited to a few operations performed by the machine, the
model will not capture the full range of the machine capa-
bilities. It is important, therefore, to ensure that the available
training data includes a wide range of operations performed
on the machine, so as to best capture a machine’s full capa-
bilities. This issue can also be mitigated in other ways, such
as incorporating machine specifications into the learning al-
gorithm or incorporating human input at critical stages, such
as planning for a totally new type of job.

Planner
This component accepts as input (1) a set of jobs to perform,
and (2) a set of available machines, each associated with a
set of capabilities the machine is assumed to have. It outputs
a plan, which is a mapping of operations to machines that
will perform them, and a schedule specifying when these
operations should be executed. The plan must ensure that
operations are only done on machines that has appropriate
capabilities. The schedule must ensure that the operations
needed to create a part are done in the appropriate order.

In our reference implementation, the planner creates a
classical planning problem whose solution is a sequence of
(operation, machine) pairs. A solution to this problem pro-
vides both a plan specifying which operation should be done
by which machine as well as the order in which they should
be executed. To obtain such a solution, we encode the clas-
sical planning problem in PDDL (McDermott et al. 1998),
a standard language for classical planning problems, and
use an off-the-shelf PDDL planner to solve it. Examples
of such planners include Fast Downward (Helmert 2006),
Fast Forward (Hoffmann 2001), and Metric FF (Hoffmann
2003). Other implementations of the planner component in
our agent may compile the problem to a mixed integer-linear
programming (MILP) and use a MILP solver. Explicitly im-
plementing a scheduler or employing a planner that can gen-
erate concurrent plans, may also be done.

Fault Detector
This component accepts as input (1) the plan for perform-
ing a set of jobs, i.e., which machine does which operation



in a job; and (2) operation data collected from the system
when executing said plan. The output of this component is a
value between zero and one that indicates how likely is that
the machine is experiencing a fault. There are many ways
to implement this component. In our implementation, there
is an anomaly detection algorithm that is trained on normal
data and then run on the collected operation data. An im-
plementation of such an anomaly detection can be as simple
as identifying values of operational characteristics of ma-
chines that are inconsistent with our capability model, or
only detect faults when an operation of a job does not meet
the desired functional (e.g., desired part not manufactured
properly) or non-functional requirements (e.g., desired part
manufactured too slowly). A different implementation of our
fault detector may include more sophisticated anomaly de-
tection algorithms that rely on machine learning algorithms.
For example, algorithms such as one-class SVM (Li et al.
2003) and one-class neural networsk such as HRN (Hu et al.
2020). These algorithms train a binary classifier to detect
anomalies, and train it by only giving it samples from the
normal scenario. In our case, we will train such a classifier
on the collected machine data from successful executions.
See Pang et al. (Pang et al. 2021) and Ruff et al. (Ruff et al.
2021) for recent surveys on techniques for anomaly detec-
tion.

Diagnoser
This component accepts the same input as the fault detec-
tor as well as the capability model learned by the capabil-
ity learner and the value returned by the fault detection (the
estimate for whether or not a fault has occurred). The out-
put of this component is one or more capabilities in the ca-
pability model that are expected to be incorrect, correlated
with the detected fault. The fault may be due to a physical
change in the machine’s capabilities or an error in the ca-
pability modeling that caused the planner to assign a job to
the machine that it was not capable of executing. In either
case, the fault signifies a mismatch between the actual and
modeled machine capabilities. Our implementation of this
component invokes a model-based diagnosis (MBD) algo-
rithm, namely GDE (De Kleer and Williams 1987), which
extracts conflicts between the assumed capability model and
the detected faults, and then identifies diagnoses as hitting
sets of these conflicts. A conflict in this case is an operation
that was not successfully executed by a machine and the ca-
pabilities of that machine, according to which that operation
should have been executable by that machine. A diagnosis in
this case is one or more capabilities in the capability model
that may not reflect correctly the capability of the machine.
Other implementations of this component could use a vari-
ety of different methods, such as a learning-based diagnosis
algorithm like the one proposed by Matei et al. (Matei et al.
2020) to diagnose hybrid systems. They used machine learn-
ing techniques to general a model of the system that is faster
to simulate. Then, a search in the space of possible diagnosis
is performed, but more efficiently since simulations are done
by the trained networks. Yet another way to implement the
diagnosis component is to isolate the faults using parameter
tracking algorithms based on optimization algorithms or fil-

tering techniques such as Kalman filers (Welch, Bishop et al.
1995) or particle filters (Gustafsson 2010).

Note that the diagnoser component may associate each
diagnosis with a likelihood score that will help selecting
which diagnosis to choose. Indeed, many diagnosis algo-
rithms support associating returned diagnosis with some
form of score. For example, such a likelihood score can be
computed using diagnosis algorithms based on Spectrum-
based Fault Localization (SFL), a well-known technique for
extracting diagnoses and their likelihoods (Janssen, Abreu,
and Van Gemund 2009).

Implementation
Our first implementation has been demonstrated on two data
sets, one on ion milling, from the 2018 PHM Data Chal-
lenge (phm 2018), and one on CnC manufacturing, from
the NIST Smart Manufacturing Systems (SMS) Testbed (cnc
2021). Ion milling is a process used in semiconductor man-
ufacturing to remove material (also referred to as “etching”
in this context). The ion milling data set contains scaled
and partially anonymized data from multiple machines, each
running processes called “recipes,” each of which consists of
multiple “recipe steps.” There are 24 variables in the data set,
most of which are numeric valued. Sample variables include
etch beam voltage, etch beam current, and ion gauge pres-
sure. The NIST SMS Testbed contains several CnC manu-
facturing machines. The data set we have focused on is a
raw data set from a Mazak mill-turn machine. This data set
contains both symbolic and numeric valued data, including
x, y, and z positions, spindle velocities, and status informa-
tion.

We implemented a simple capability modeler based on
ranges as values, as described above. For the ion milling data
set, since there are 24 variables, the system learns 24 param-
eterized capabilities, x ∈ [a, b]. The capabilities are learned
from a set of training data simply by observing the range of
values present. A sample model is shown in Figure 2. Each
recipe step in a recipe has a required range of parameters,
so each recipe that the system is requested to execute can
be mapped to required ranges for the 24 parameters. These
required ranges can then be compared with the capabilities
of the different machines to determine which machines can
execute the recipe. As described above, we compiled the
planning problem of assigning recipes to machines to PDDL
(Figure 3), and then used Fast Downward (Helmert 2006),
which is a popular off-the-shelf PDDL planner.

In more details, we used the capability model to iden-
tify which recipe steps can be performed by which machine.
Then, we created a PDDL with an action for every pair of
recipe step and machine that can perform it. To ensure recipe
steps are done by the same machine and in order, we added
to each action preconditions to ensure the previous recipe
steps have been performed. Figure 3 shows how an example
of the PDDL for these actions.

We simulated the closed-loop system with all the com-
ponents shown in Figure 1. Incoming jobs were simulated
using a reserved test set from the data. The planner assigned
the jobs to the multiple machines in the simulated factory.
We simulated faults in the factory machines by restricting



Figure 2: Sample capability model.

Figure 3: Sample PDDL action models.

the ranges in the machine capabilities, i.e. decreasing b or
increasing a in the capability x ∈ [a, b] in the “true” ma-
chine simulation. In this setup, then, a fault was detected if
the planner assigned a recipe to a machine with true cur-
rent capability x ∈ [a, b], and the recipe required a value
outside of [a, b]. Once a fault was detection, the system at-
tempted to diagnose the fault, using a GDE-based diagnoser,
as described above, to identify which capability (parame-
ter range) needed to be updated, and to restrict that range
accordingly. The fault detection and diagnosis triggered re-
planning, so that the jobs could be reassigned based on the
updated capability model.

We also tested the system on the NIST SMS Testbed data.
There, we focused on modeling capabilities regarding five
numeric values (x position, y position, z position, and two
spindle speeds) and two symbolic values (a tool identifier

and an execution status). The system performed similarly
for this data set.

Conclusion and Future Work
In this paper, we describe the design of a system that auto-
matically learns a PDDL model of machine capabilities in a
factory, and uses the learned model to plan how to allocate
tasks to machines by utilizing a domain-independent plan-
ner. The system models capabilities of machines by identi-
fying the ranges of valid parameters of machines, or convex
models of valid parameter combinations for the machines.
Moreover, the system identifies faults when they occur, di-
agnoses them, and updates its learned capability models and
correspondingly updates the resource allocation in real time
(reconfiguration). We have implemented a preliminary ver-
sion of this system on two data sets, from different types of
machines — ion milling and CnC. Future work will compare
the performance of our system with non-adaptive allocations
of tasks, and will evaluate the accuracy of the learned capa-
bility models.

Acknowledgements
This work has been partially funded by the SAIL-ON
DARPA program.

References
2018. PHM Data Challenge 2018. https://phmsociety.org/
conference/annual-conference-of-the-phm-society/annual-
conference-of-the-prognostics-and-health-management-
society-2018-b/phm-data-challenge-6/.
2021. NIST SMS testbed. https://www.nist.gov/
laboratories/tools-instruments/smart-manufacturing-
systems-sms-test-bed.
Aineto, D.; Celorrio, S.; and Onaindia, E. 2019. Learning
action models with minimal observability. Artificial Intelli-
gence, 275: 104–137.
Amir, E.; and Chang, A. 2008. Learning partially observ-
able deterministic action models. Journal of Artificial Intel-
ligence Research, 33: 349–402.
Bärring, M.; Shao, G.; Helu, M.; and Johansson, B. 2020.
A Case Study For Modeling Machine Tool Systems Us-
ing Standard Representations. In 2020 ITU Kaleidoscope:
Industry-Driven Digital Transformation (ITU K), 1–8.
Chandola, V.; Banerjee, A.; and Kumar, V. 2009. Anomaly
detection: A survey. ACM computing surveys (CSUR),
41(3): 1–58.
Crawford, L. S.; Do, M. B.; Ruml, W. S.; Hindi, H.; Elder-
shaw, C.; Zhou, R.; Kuhn, L.; Fromherz, M. P. J.; Biegelsen,
D.; de Kleer, J.; and Larner, D. 2013. On-Line Reconfig-
urable Machines. AI Magazine, 34(3): 73–88.
Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013.
Acquiring planning domain models using LOCM. The
Knowledge Engineering Review, 28(2): 195–213.
De Kleer, J.; and Williams, B. C. 1987. Diagnosing multiple
faults. Artificial intelligence, 32(1): 97–130.



Do, M.; Okajima, K.; Uckun, S.; Hasegawa, F.; Kawano, Y.;
Tanaka, K.; Crawford, L.; Zhang, Y.; and Ohashi, A. 2011.
Online Planning for a Material Control System for Liquid
Crystal Display Manufacturing.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
planning and acting. Cambridge University Press.
Gregory, P.; and Cresswell, S. 2015. Domain Model Acqui-
sition in the Presence of Static Relations in the LOP Sys-
tem. In International Conference on Automated Planning
and Scheduling (ICAPS), 97–105.
Gustafsson, F. 2010. Particle filter theory and practice with
positioning applications. IEEE Aerospace and Electronic
Systems Magazine, 25(7): 53–82.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Hoffmann, J. 2001. FF: The fast-forward planning system.
AI magazine, 22(3): 57–57.
Hoffmann, J. 2003. The Metric-FF Planning System: Trans-
lating“Ignoring Delete Lists”to Numeric State Variables.
Journal of artificial intelligence research, 20: 291–341.
Hu, W.; Wang, M.; Qin, Q.; Ma, J.; and Liu, B. 2020. HRN:
A Holistic Approach to One Class Learning. In Larochelle,
H.; Ranzato, M.; Hadsell, R.; Balcan, M. F.; and Lin, H.,
eds., Advances in Neural Information Processing Systems,
volume 33, 19111–19124.
Janssen, T.; Abreu, R.; and Van Gemund, A. J. 2009. Zoltar:
a spectrum-based fault localization tool. In PESEC/FSE
workshop on Software integration and evolution, 23–30.
Juba, B.; Le, H. S.; and Stern, R. 2021. Safe Learning of
Lifted Action Models. In International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR),
379–389.
Juba, B.; and Stern, R. 2022. Learning Probably Approx-
imately Complete and Safe Action Models for Stochastic
Worlds.
Li, K.-L.; Huang, H.-K.; Tian, S.-F.; and Xu, W. 2003. Im-
proving one-class SVM for anomaly detection. In IEEE In-
ternational Conference on Machine Learning and Cybernet-
ics, volume 5, 3077–3081. IEEE.
Mansour, Y. 1995. An O (nlog log n) learning algorithm for
DNF under the uniform distribution. Journal of Computer
and System Sciences, 50(3): 543–550.
Matei, I.; Feldman, A.; de Kleer, J.; and Perez, A. 2020. Real
time model-based diagnosis enabled by hybrid modeling. In
Annual Conference of the PHM Society, volume 12, 10–10.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL - the
planning domain definition language.
Pang, G.; Shen, C.; Cao, L.; and Hengel, A. V. D. 2021.
Deep learning for anomaly detection: A review. ACM Com-
puting Surveys (CSUR), 54(2): 1–38.
Perzylo, A.; Grothoff, J.; Lucio, L.; Weser, M.; Malakuti, S.;
Venet, P.; Aravantinos, V.; and Deppe, T. 2019. Capability-
based semantic interoperability of manufacturing resources:
A BaSys 4.0 perspective. IFAC-PapersOnLine, 52(13):

1590–1596. 9th IFAC Conference on Manufacturing Mod-
elling, Management and Control MIM 2019.
Ruff, L.; Kauffmann, J. R.; Vandermeulen, R. A.; Montavon,
G.; Samek, W.; Kloft, M.; Dietterich, T. G.; and Müller, K.-
R. 2021. A unifying review of deep and shallow anomaly
detection. Proceedings of the IEEE.
Segura-Muros, J. Á.; Pérez, R.; and Fernández-Olivares, J.
2021. Discovering relational and numerical expressions
from plan traces for learning action models. Applied Intelli-
gence, 1–17.
Sprock, T.; Sharp, M.; Bernstein, W. Z.; Brundage, M. P.;
Helu, M.; and Hedberg, T. 2019. Integrated Opera-
tions Management for Distributed Manufacturing. IFAC-
PapersOnLine, 52(13): 1820–1824. 9th IFAC Conference on
Manufacturing Modelling, Management and Control MIM
2019.
Stern, R.; and Juba, B. 2017. Efficient, Safe, and Probably
Approximately Complete Learning of Action Models. In
the International Joint Conference on Artificial Intelligence
(IJCAI), 4405–4411.
Vichare, P.; Nassehi, A.; Kumar, S.; and Newman, S. T.
2009. A Unified Manufacturing Resource Model for repre-
senting CNC machining systems. Robotics and Computer-
Integrated Manufacturing, 25(6): 999–1007. 18th Interna-
tional Conference on Flexible Automation and Intelligent
Manufacturing.
Vichare, P.; Zhang, X.; Dhokia, V.; Cheung, W.; Xiao, W.;
and Zheng, L. 2017. Computer numerical control machine
tool information reusability within virtual machining sys-
tems. Proceedings of the Institution of Mechanical Engi-
neers, Part B: Journal of Engineering Manufacture, 232.
Welch, G.; Bishop, G.; et al. 1995. An introduction to the
Kalman filter.
Williams, B. C.; and Ragno, R. J. 2007. Conflict-directed
A* and its role in model-based embedded systems. Discrete
Applied Mathematics, 155(12): 1562–1595.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artificial
Intelligence, 171(2-3): 107–143.


