
32nd International Conference on
Automated Planning and Scheduling

June 13 - 24, 2021, Singapore (virtual)

FinPlan 2022
Preprints of the 3rd Workshop on

Planning for
Financial Services (FinPlan)

Edited by:

Alberto Pozanco, Shirin Sohrabi, Parisa Zehtabi

Organization

Alberto Pozanco
J.P. Morgan AI Research, Spain

Shirin Sohrabi
IBM Research

Parisa Zehtabi
J.P. Morgan AI Research, UK

Program Committee

Daniel Borrajo (J.P. Morgan AI Research, Spain)
Giuseppe De Giacomo (Sapienza Università di Roma, Italy)
Mark Feblowitz (IBM, USA)
Fernando Fernández (Universidad Carlos III de Madrid, Spain)
Senka Krivic (University of Sarajevo, Bosnia and Herzegovina)
Alberto Pozanco (J.P. Morgan AI Research, Spain)
Rui Silva (J.P. Morgan AI Research, UK)
Shirin Sohrabi (IBM, USA)
Parisa Zehtabi (J.P. Morgan AI Research, UK)

ii

Foreword

Planning is becoming a mature field in terms of base techniques and algorithms to solve goal- oriented tasks. It has been
successfully applied to many domains including classical domains such as logistics or mars rovers, or more recently in oil and
gas, as well as mining industry. However, very little work has been done in relation to financial institutions problems. Recently,
some big financial corporations have started AI research labs and researchers at those teams have found there are plenty of open
planning problems to be tackled by the planning community. For example, these include, trading markets, workflow learning,
generation and execution, transactions flow understanding, risk management, fraud detection and customer journeys.

FinPlan’22 is the third workshop on Planning for Financial Services held in conjunction with ICAPS, whose aim is to
bring together researchers and practitioners to discuss challenges for Planning in Financial Services, and the opportunities such
challenges represent to the planning research community.

Alberto Pozanco, Shirin Sohrabi, Parisa Zehtabi, June 2022

iii

Contents

Defending Against Adversarial Attacks on Policies Through Density Estimation
Alberto Villanueva, Marcos Villacañas, Rubén Majadas, Javier Garcı́a, Fernándo Fernandez 1

PFPT: a Personal Finance Planning Tool by means of Heuristic Search and Automated Planning
Alberto Pozanco, Kassiani Papasotiriou, Daniel Borrajo 10

Filtering Top-k Relevant Plans
Mauricio Salerno, Miguel Tabernero, Raquel Fuentetaja, Alberto Pozanco 17

iv

Defending Against Adversarial Attacks on Policies Through Density Estimation

Alberto Villanueva1, Marcos Villacañas1, Rubén Majadas1, Javier Garcı́a2, Fernando Fernández1

1 Departamento de Informática, Universidad Carlos III de Madrid
2 Departamento de Electrónica y Computación, Universidad de Santiago de Compostela

alvillan@inf.uc3m.es, mvillaca@pa.uc3m.es, rmajadas@pa.uc3m.es, franciscojavier.garcia.polo@usc.es,
ffernand@inf.uc3m.es

Abstract

In recent years, reinforcement learning (RL) and, in particu-
lar, its “deep” variant, has been applied to tasks in the real
world gradually. RL has shown unprecedented popularity,
such as autonomous driving, robot control, solving complex
video games. It was a matter of time before deep RL burst
into finance and trading as well. Financial markets are simply
too complex for non learning-based algorithms, as the state
and action spaces are continuously expanding every second.
With RL, however, we can learn autonomously complex trad-
ing strategies that can maximize profits in spite of the highly
stochastic and non-stationary nature of financial markets. But
if the field of finance and trading is benefiting from the power
of deep RL algorithms, it has also inherited its vulnerabil-
ities. Deep RL algorithms are well-known to be inherently
vulnerable to manipulation by intentionally perturbed obser-
vations, rewards or actions, leading to unintended and poten-
tially harmful results. This is particularly relevant in a finan-
cial context, where exploiting these vulnerabilities provides
adversaries with the means to lead a company to millionaire
losses. For this reason, in this paper we investigate a two-step
defense mechanism not only able to detect these adversarial
attacks, but also to recover from them. We show that our ap-
proach manages to achieve a nearly perfect defense in simple
domains, and is proficient against several state-of-the-art at-
tacking strategies.

Introduction
There has been an upward trend in recent years to use rein-
forcement learning (RL) in financial markets (Fischer 2018)
and, as RL policies get applied to real world environments, a
focus has to be placed on ensuring these policies are resilient
against malign actors trying to interfere with the system. A
perfect example of this is High Frequency Trading (HFT), a
trading strategy which uses high speed algorithms in order
to benefit from arbitrage opportunities. This way of operat-
ing constantly scans the Limit Order Book status, seeking to
find mismatches of any size. As a result, hundreds of trades
are closed every second placing value on, not only mo-
mentum, but also reliability. Recently, RL has gained pop-
ularity among policy training methods for HFT strategies
(Briola et al. 2021). Thus, the motivation of this research
is clear. Fighting adversarial attacks would help to prevent

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

millionaire loses in this field. Recent advancements in ad-
versarial machine learning have shown that agents based
in neural networks are particularly sensitive to malignantly
crafted small perturbations (Szegedy et al. 2014). These at-
tacks have usually been applied to supervised learning tasks.
However, they have also shown to be proficient when tack-
ling RL policies (Kos and Song 2017).

In our work, we propose a two-step based defense sys-
tem. First, we use experience tuple density estimation to
identify when a new state has been perturbed. By using a
non-supervised method, we avoid modeling specific attack-
ing patterns, which aids in generalizing against any possi-
ble attack. Then, if a perturbation is detected in the state,
the original state is recovered by using a k-nearest-neighbor
approach on the experience tuple space. In contrast to pre-
vious defense methods, our approach avoids the use of neu-
ral networks, as defense systems based on neural networks
have also shown to be sensitive to malignantly crafted per-
turbations (Carlini and Wagner 2017a). We show that our ap-
proach manages to achieve a nearly perfect defense in sim-
ple domains, and is proficient against several state-of-the-art
attacking strategies.

Background
In this section, the concepts of RL and adversarial machine
learning are reviewed.

Reinforcement Learning
RL environments are typically formalized by means of a
Markov Decision Process (MDP) (Sutton and Barto 2018),
which is a mathematical model of sequential decisions and
a dynamic optimization method. It is represented by a tuple
< S,A, T,R > where S is the set of possible states, A is the
set of possible actions available from each state, T : S x A x S’
→ [0,1] is the transition function where T(s,a,s’) represents
the probability of getting to state s’ from state s when action
a is performed, and R : A × S → ℜ is the reward function
which maps a state s and an action a into a reward R(s,a); r
is used hereinafter to represent the stochastic reward result
obtained from a distribution with mean R(s,a).

In a Markov decision-making process, the transition prob-
ability and reward only depend on the current state and the
action chosen. As a result, the objective is learning a policy
π for every state to maximize the return of J(π):

1

J(π) =
K∑

k=0

γkrk (1)

where γ affects how much future is considered from step k
(discount factor, with 0 ≤ γ ≤ 1) and rk corresponds to
reward received in step k. At this point, the value-function,
which estimates the sum of rewards given a policy π, can be
solved using Bellman’s equation.

In Deep Q-Learning (Mnih, Kavukcuoglu, and Davi
2013), neural networks are used to estimate the action-value
function, and the value over which the loss function takes
place for the learning process, corresponds to the squared
Bellman error, that is, the difference between the expected
value and the predicted value.

Es,a[(r + γmax
a′

Q(s′, a′)−Q(s, a))2] (2)

Along to this, the learning takes place in a batch fashion,
where instead of learning over one experience tuple at a
time, the agent holds a memory of the last N experience
tuples and, at every learning step, a sample is taken over
the experience tuples in memory. These agents built using
Neural Network take the name of Deep Q Networks (DQN)
(Mnih, Kavukcuoglu, and Davi 2013).

Adversarial Machine Learning
In adversarial machine learning, adversarial examples are
maliciously generated such that the machine learning model
fails its task. Particularly, models based on neural networks
have been shown to be specially vulnerable to such attacks.

These attacks can be classified as poisoning attacks,
where adversarial examples are injected into the training
phase, and exploratory attacks, where the adversarial exam-
ples are injected into the testing phase (Sethi and Kantardzic
2018). Furthermore, the previous classification can be en-
riched by taking into consideration a complementary per-
spective of the offensive strategy. Depending on whether the
adversary has access to the model parameters, architecture
or training data, or not, attacks are considered to be white-
box or black-box, respectively. Even though having total
knowledge to model’s internal data for white-box attacks is
game-changing capability, it is not common under real sce-
narios circumstances. From a realistic point of view, trying
to exploit the model’s vulnerabilities based on input/output
pairs exclusively, as it is on black-box attacks, is closer to
a down-to-earth approach. On adversarial machine learning
tasks, the only thing that needs to be defined is how to create
the adversarial example, however in adversarial RL, also it
has to be decided when to create an adversarial example.

Adversarial example crafting Crafting an adversarial ex-
ample xδ for a model f from a given input x can be de-
scribed as the optimization problem described in Equation
3, where l and lδ are the labels of x and xδ respectively and
∥·∥ denotes the p-norm distance. Here the perturbation can
be defined as η = xδ − x and the optimization problem can
be described as finding the lowest perturbation η that man-
ages to make the model f make a mistake when evaluating

an instance x. In the area of classification, making a mistake
would be equivalent to predicting the wrong label for x, and
in the area of regression to predicting a value as far away as
possible from the real value.

min
∥∥xδ − x

∥∥
p

s.t. f(xδ) = lδ

f(x) = l (3)

l ̸= lδ

x ∈ [0, 1]

Adversarial attacks on policies Regarding RL in particu-
lar, with the intention of contemplating different approaches,
the spotlight has been put on three recently proposed strate-
gies which have been chosen to be tested against detection
and recovery techniques presented hereunder.
• Uniform attack: this adversarial behavior consists on

perturbing each state the agent observes, that is to say,
attacking at every time step adding some noise (Huang
et al. 2017). The perturbation injected can be created us-
ing FGSM (Szegedy et al. 2014) where the cost func-
tion needed to calculate the gradients J(θ, x, y) is the
cross-entropy loss between y, which is the weighting over
the possible actions, and the distribution that places all
weight on the highest weighted action in y. (Huang et al.
2017). On the subject of our work, in order to approxi-
mate better to a real-life situation, it has been decided to
not attack continually.

• VF attack: this attack injects a perturbation when the
value function is greater than some threshold β. The rea-
soning is to perturb the agent on some crucial moments
when it is close to reaching a reward. This can be seen
as described in Equation 4. (Kos and Song 2017). Just
like in uniform attack, to craft the adversarial examples,
FGSM can be used (Szegedy et al. 2014).

max
a∈A

Q(st, a) > β (4)

• Strategically-Timed attack: in this strategy, a perturba-
tion is only incorporated to a normal state when there is
a strong preference for an action over another one. Con-
sequently, this attack inflicts more harm at the time the
trained agent would strive to take a key action (Lin et al.
2019). The attack trigger is also set using a beta param-
eter, thus only when the difference between the highest
and lowest Q values1 exceeds beta, the attack will take
place as can be seen in Equation 5. In addition, to avoid
attacking excessively, a second parameter controls the
maximum amount of times the agent can suffer an at-
tack (Lin et al. 2019). To craft adversarial examples, it
looks for an observation that can change the most pre-
ferred action to the least preferred one by using the Car-
lini & Wagner attack (Carlini and Wagner 2016).

max
a∈A

Q(st, a)−min
a∈A

Q(st, a) > β (5)
1In the original work the difference between the preference to

take an action is used. For policy gradient algorithms that is the
probability to take an action and for value based methods it is the
softmax function of the Q values

2

VF and Strategically-Timed attacks are white-box attacks,
hence access to agent’s Q values is required, while uniform
attack is a black-box attack. However, it has been shown
that, although less effective, an adversarial example can be
transferred from one agent to another which could make
white-box attacks work in a black-box environment (Huang
et al. 2017).

Related work
To countermeasure these adversarial attacks, several de-
fensive strategies have been proposed which can be di-
vided into two distinct groups, proactive and reactive (Yuan
et al. 2019). Proactive strategies protect the model from be-
ing affected from adversarial attacks before the model has
been attacked. These include techniques such as adversar-
ial training (Wu, Bamman, and Russell 2017; Dong et al.
2017; Goodfellow, Shlens, and Szegedy 2015; Tramèr et al.
2020; Huang et al. 2016), classifier robustifying (Bradshaw,
de G. Matthews, and Ghahramani 2017; Abbasi and Gagné
2017), and network destilation (Papernot et al. 2016). Inside
reactive strategies, two main types are discussed, adversarial
detecting, in which the objective is to identify in test which
of the given instances are adversarial, and input reconstruc-
tion, in which the objective is to reconstruct an adversarial
example to the original example without the added noise so
that the model can work normally with the clean example.

A plethora of different approaches have been taken to de-
tect these adversarial attacks in the testing stage. A binary
classifier sub-network can be trained with adversarial exam-
ples to distinguish them from the clean ones (Metzen et al.
2017; Gong, Wang, and Ku 2017) and another way is to add
an additional output class to the networks output that corre-
sponds to adversarial inputs (Grosse et al. 2017). Safety-net
(Lu, Issaranon, and Forsyth 2017) uses an RDF-SVM that
utilizes discrete codes computed from late stage ReLUs to
detect adversarial examples, however similarly to the pre-
vious methods, it also requires to be trained with adversar-
ial examples, which means that it has to model the attacker
which is unlikely to generalize well to other processes to
generate adversarial examples (Meng and Chen 2017).

Mag-Net (Meng and Chen 2017) uses an ensemble of 2
detectors, one is an autoencoder trained on the original clean
dataset that predicts whether it is an adversarial example or
not based on the reconstruction error, where an error higher
than a threshold indicates an adversarial example. This per-
forms well when the error is high enough but for smaller
errors a second detector was added that measures the diver-
gence between the logit of the input example and that of the
autoencoded example, where a high divergence indicates an
adversarial example, and finally, to ensemble them an ad-
versarial attack is reported if any of the two detectors detect
one.

Principal component analysis (PCA) whitening can be
used on the input examples, and since adversarial ones have
different coefficients for low-ranked principal components,
a detector can be created from it (Hendrycks and Gimpel
2017). Furthermore, the authors say that a combination of
detectors might be a better way to try to deal with adversar-
ial detection.

A detector can also be built using a logistic regressor us-
ing as inputs the kernel density of the input example, calcu-
lated using the training set on the feature space of the last
hidden layer, and the Bayesian uncertainty estimate of the
network for said example (Feinman et al. 2017).

However, Carlini & Wagner (2017a) showed that most of
these defenses are not as effective as previously analyzed,
as they are still susceptible to their previous attack (Carlini
and Wagner 2016) when the loss function is changed. Fur-
thermore, they offer some guidelines on how to better ap-
proach detection defenses; such as using strong attacks for
evaluation instead of single iteration ones, and that it should
be resistant against white-box attacks too and not only gray
or black box ones. They also showed the methods that per-
formed the worst were the ones using another neural net-
work for detection, because if an adversarial example can be
made to fool one network, there can also be one that fools
both (Carlini and Wagner 2017a,b).

Input reconstruction tries to transform the input data when
it has been detected as having been attacked such that
the output of the reconstructed input matches that of the
unattacked one. Autoencoders can be used to perform in-
put reconstruction (Meng and Chen 2017; Gu and Rigazio
2015) by learning from the training data. Another way is the
approach taken by pixel defend (Song et al. 2017) where the
training distribution probability of the novel example is es-
timated by using PixelCNN (van den Oord, Kalchbrenner,
and Kavukcuoglu 2016) and then, a new value is generated
for each pixel along each channel such that the probability
distribution estimated of the new example is maximized and
the difference between the original value and the new value
is smaller than some value ϵ moving it closer towards the
training dataset.

In the field of RL, on previous work on defensive mech-
anisms, the current state is predicted with the previous m
states and m actions with which the result is then used to
compare the states Q values with the received state Q values,
where a high discrepancy indicates an adversarial attack has
been produced, since the objective of the adversarial attack
is to change the policy of the agent. Furthermore, an optimal
action can be suggested based on the Q values of the pre-
dicted state and thus reconstruct the policy for the state (Lin
et al. 2017).

Architecture - Proposal
The architecture for our defense system consists of two mod-
ules, the detection system, which detects if a state has been
attacked, and the recovery system, which once a state has
been detected as an attacked one, tries to recover the orig-
inal values from the state. Both systems work by inferring
knowledge over the experience tuple instead of just over the
state to take into account the sequential nature of RL tasks,
so after an action a is performed over the state s, the detec-
tion system analyzes the experience tuple < s, a, s′, r > to
detect if the next state s′ has been attacked or not.

To achieve this, both systems use experience tuples
in the form of τ = < s0, s1, ..., sn, a0, a1, ..., am,
s′0, s

′
1, ..., s

′
n, r >, where si is the i-th feature of the state,

3

and ai is the i-th feature of the action, where categorical ac-
tions or state features are one-hot encoded so that distance
measures can be used, that are extracted by observing the
agent’s regular behavior on the testing phase and storing its
experience tuples in the form of Γ = {τ0, τ1, ..., τn}. To
calculate similarity measures between any two experience
tuples, ℓ2 distance is used.

The overall process can be described as a number of steps
where first the agent is trained (i), then Γ is extracted (ii)
with which, a detection system (iii) and a recovery sys-
tem (iv) are trained. During execution, the systems works
as shown in Figure 1 where each new transition is given to
the detector which predicts if it belongs to the distribution of
Γ and, if it doesn’t, it is given to the recovery system, which
returns the reconstructed new state.

Figure 1: Defense Architecture Diagram

Detection System
When it comes to detecting an adversarial transition, our
method compares the new perceived transition against the
transitions in Γ, and if it deviates far enough from them, it is
classified as an adversarial transition. This task can be seen
as detecting outliers (adversarial examples) or estimating the
underlying density function (DF) of Γ and labeling as adver-
sarial transitions those with a low DF.

A number of different algorithms are used to estimate the
DF, none of which use a Neural Network as the one used in
pixel defense (Song et al. 2017) or in Visual Foresight (Lin
et al. 2017), since Carlini and Wagner (2017a) found that
defenses that used a Neural Network to defend from adver-
sarial attacks happened to be the ones who performed the
poorest as an attack could be designed to circumvent both
neural networks, the predictor and the defender:

• Kernel density with a Gaussian kernel is used to esti-
mate the underlying probability DF.

• DBSCAN (Ester et al. 1996) tries to identify the outliers
in a set of data, however, in our case we already know a
set of non-outlier data points, that being Γ, so instead we
only calculate whether the new transition is an outlier or
not in respect to Γ. Furthermore, instead of using a mini-
mum number of samples needed inside the given radius,
the number of samples inside the radius is used as the DF
value.

• KNN density estimation is used to estimate the underly-
ing DF, however, two different implementations of den-
sity estimation using KNN have been used:

– The distance to the k nearest neighbors is taken, and a
function is applied to them that returns a scalar such as
the sum, the mean or maximum (which would simply
be the distance to the k-th nearest neighbor).

– The density is built according to the formula
n(x,a)

NV (B(x,a)) where B(x, a) is the hypersphere centered
in x with radius a, V (·) represents a volume, N is the
number of samples and n(x, a) is the number of points
within B(x, a) (Zhao and Lai 2020). From now on,
this one will be referred to as Hyper-KNN.

• Gaussian Mixture (Dempster, Laird, and Rubin 1977)
estimates the underlying DF by fitting a mixture of Gaus-
sian distributions to Γ and later using them to find the
mixture probability.

• K-Means (Hartigan 1975) can be seen as a simplified
version of Gaussian mixture, where the covariance ma-
trix is fixed to being a scalar matrix, and the scalar con-
trols the size of the cluster. The density metric used here
is the inverse of the distance to the nearest centroid, as
a higher number should correspond to a higher density.
Furthermore, from this base DF two different approaches
are taken:

– No further changes are applied, and the DF depends
solely on the distance to the nearest centroid. From
now on this will be referred to as k-means global.

– The DF is normalized with the distance to the furthest
training sample assigned to the cluster the DF is based
on. This makes it so that the DF takes into account
contextual information from the cluster it is using, as
it now depends on the size of the cluster.From now on
this will be referred to as k-means local.

• One class SVM according to Schölkopf (Schölkopf et al.
2000) is used to establish a binary detection system. If the
new transition falls between the origin and the calculated
hyperplane, the sample is considered to be an adversarial
transition.

Apart from one class SVM, every other method estimates
a DF, but that is not enough to distinguish between adver-
sarial and normal transitions, thus, a threshold has to be se-
lected after which the transition is classified as adversarial.
For that, the lowest DF value predicted from all transitions in
Γ is used; that way, any new experience tuples with a lower
DF than any in Γ is classified as an adversarial one. By se-
lecting the decision threshold solely on normal experience
tuples, it avoids the need to model any type of attacks, which
ensures that it can not overfit the detection for that given at-
tack.

Recovery System
The recovery system tries to increase the DF of the experi-
ence tuple that has been identified as an adversarial one, to
do so, we once again step away from methods that use Neu-
ral Networks such as in Pixel Defense (Song et al. 2017)
or visual foresight (Lin et al. 2017) for the same reasons as
the ones described in the detection system, and so we pro-
pose a method that is independent of the detection system

4

and the learning agent, that repairs the next state by using
the next state of the k nearest transitions in Γ, and weighting
them by the distance to the original transition, where a k of 1
means that it takes the entire next state of the nearest neigh-
bor. However, since the next state could be too corrupted
due to adversarial injection, the recovery system calculated
the distances in Γ′, a subspace of Γ that does not include the
next state. In order for the distances to have an actual mean-
ing, the transition vector features have to be normalized, and
discrete features have to be one-hot encoded if the set con-
taining of all the possible values of the feature is not totally
ordered.

ŝ′ =
k∑

i

wis
′
i (6)

wi =
∥τ ′ − τ ′i∥2

k∑
j

∥∥τ ′ − τ ′j
∥∥
2

Evaluation
This section evaluates the performance of the proposed de-
fense in four different well-known domains from the Ope-
nAI gym library: Acrobot, Cart pole, Mountain car and Taxi.
But before presenting the results, the experimental setting is
introduced.

Experimental setting
The proposed domains have been previously solved us-
ing tabular Q-Learning with an ϵ-greedy exploration-
exploitation strategy. The agents are discretized along each
dimension within the state limits in a number of bins2, and
are trained during H episodes with a limit of K steps per
episode with the learning rate (α), and discount rate (γ) de-
scribed in Table 2. Each of the training process will generate
a policy π which will then be attacked and defended with the
proposed system.

After the agents are trained, Γ is extracted (the algorithm
Ball Tree (Dolatshah, Hadian, and Minaei-Bidgoli 2015) is
used for efficient spacial indexing in the detector and recov-
ery systems) from each agent by running them 500 episodes.

However, if a single adversarial example bypasses the de-
fense system, it could throw off the trained policy off of the
optimal path, which, if it is the only path the defense system
has seen, would make it seem like every subsequent transi-
tion is adversarial (as it could be vastly different from what
it has seen before). It is for this reason that instead of using
the learned policy in a fully greedy way, an ϵ-greedy policy
is used (ϵ = 0.1) to prevent the transition sample from over-
fitting to the optimal path from the learned policy. That way,
it accounts for slight deviations from the optimal path.

2These bin sizes are used to take into account the entire pos-
sible state space, however a lot of bins in Acrobot, Cart Pole and
Mountain Car are empty as the states they describe are either un-
reachable, or so unlikely they are never visited. The number of bins
where the learning actually takes place in is 14.3K, 13.7K and 7k
for Acrobot, Cart Pole and Mountain Car respectively

For the adversarial perturbations, noise is generated at
each dimension with a random value between 0 and δ√

d
,

where d is the number of dimensions and δ is as shown in Ta-
ble 1 for Acrobot, Cart Pole and Mountain Car, and then, the
noise is added to the state normalized across the dimension
limits such that ∥ η ∥2≤ δ. In the case of the Taxi environ-
ment, as the state space is discrete, the position of the agent
is changed by 1 in the y or x coordinate. Only the position of
the agent is attacked, as the other values, the passenger po-
sition and destination position, are given in the form of the
index of a list that contain a set of possible positions, hence,
a change of 1 in the index corresponds to a change of more
than one in the actual positions, e.g. a change from 0 to 1 in
the passenger position dimension (p) changes the position it
is referring to, from (0,0) to (0, 4).

For the attacking strategies, three have been used; Uni-
form, Value Function and Strategically Timed attacks as de-
scribed previously, whose parameters have been fine-tuned
to achieve a compromise between the noise they inject and
the damage they create, and are shown in Table 1.

Environment δ
Uniform VF ST

Frequency β β max
Acrobot 0.10 0.5 -27 1.300 150

Cart Pole 0.10 0.5 40 0.800 50
Mountain

Car 0.14 0.5 -15 1.300 50

Taxi 1.00 0.5 19 10.185 12

Table 1: Attack parameters

Results
Foremost, in Table 3 we showcase the average performance
obtained by each agent across 200 episodes, how each attack
affects the performance, and how much total perturbation (δ)
it injects into an episode to achieve that loss in performance.
The total perturbation injected is calculated by summing the
ℓ2 distance from the original state to the attacked state for
each step in the episode. Here it can be seen how in the Cart
Pole and Mountain Car environments, VF-attack and ST-
attack achieve an equal or superior performance than Uni-
form attack while injecting much less perturbation. In the
Taxi and Acrobot environments, ST-attack achieves a better
performance with a similar or lower perturbation, but VF-
attack achieves a higher performance at the cost of a lot more
total perturbation. This is because with VF-attack, the states
closer to the reward are attacked which prevents the agent
from finishing the episode, and it enters a loop where it is
constantly attacking the agent as the agent is always near the
end of the episode but never really ending except if it per-
forms the adequate action by pure chance, which explains
the high variance.

Then Γ is normalized in one of two different ways, either
using min max feature scaling normalization or z-score nor-
malization. Afterwards, the detectors are trained using the
parameters shown in Table 4. They are then evaluated by
running the agent against each attack during 100 episodes

5

Domain State Bins α γ ϵ H K

Acrobot

θ1 ∈ [−π, π]
θ2 ∈ [−π, π]
ωθ1 ∈ [−4π, 4π]
ωθ2 ∈ [−9π, 9π]

20
20
20
20

0.1 0.99 0.5 20000 500

Cart Pole

p ∈ [−4.8, 4.8]
v ∈ [−4, 4]
ϕ ∈ [−0.418, 0.418]
κ ∈ [−4, 4]

10
50
50
50

0.1 0.99 0.3 20000 200

Mountain Car p ∈ [−1.2, 0.6]
v ∈ [−0.007, 0.007]

100
100 0.1 0.99 0.3 300000 200

Taxi

y ∈ {0, 1, 2, 3, 4}
x ∈ {0, 1, 2, 3, 4}
p ∈ {0, 1, 2, 3, 4}
d ∈ {0, 1, 2, 3}

5
5
5
4

0.1 0.99 0.3 20000 200

Table 2: Train parameters for the victim policies

No attack Uniform VF ST

Acrobot -140.96 ± 34.00 -171.13 ± 40.53
δ = 109.14 ± 28.07

-178.21 ± 52.59
δ = 131.28 ± 65.07

-180.20 ± 42.65
δ = 64.28 ± 18.43

Cart Pole 200.00 ± 0.00 116.74 ± 53.98
δ = 43.49 ± 19.13

50.77 ± 22.24
δ = 20.40 ± 11.79

52.80 ± 41.76
δ = 22.32 ± 9.47

Mountain Car -98.98 ± 7.60 -149.87 ± 21.64
δ = 13.35 ± 2.40

-188.70 ± 23.42
δ = 9.27 ± 2.02

-154.43 ± 26.57
δ = 5.71 ± 2.39

Taxi 7.80 ± 2.56 -2.28 ± 9.92
δ = 9.95 ± 4.74

-51.40 ± 90.47
δ = 54.36 ± 82.50

-11.12 ± 14.88
δ = 9.80 ± 3.09

Table 3: Trained policy with and without attacks, and the total perturbation (δ) injected into an episode measured by ℓ2 distance

where at each time step, if the state is detected as being an
adversarial one, the original state is restored. This is done to
decouple the results from the detector and the recovery sys-
tems and see how each of them behave independent of the
other. The balanced accuracy is shown in Table 5 highlight-
ing results of over 90% accuracy.

Detector Parameters
Kernel Density h: Scott’s Rule

DBSCAN ϵ: Scott’s Rule
KNN-Hyper a: Scott’s Rule

KNN k: 3, 5, 10, 15, 20, 30, 40, 50, 75, 100
f: sum, mean, max

Gaussian Mixture k: 256, 512, 1024, 2048
K-means Global k: 256, 512, 1024, 2048, 4096
K-means Local k: 256, 512, 1024, 2048, 4096
One Class SVM ν: 0.01, 0.05, 0.1, 0.5

Table 4: Detector parameters, where values separated by
commas mean that all of those were tried and the best was
selected

As can be seen in Table 5, the type of normalization has a
strong impact on the performance of the detectors based on
the environment; for every environment except for Cart Pole,
z-score normalization has higher results for almost every de-
tector, but in Cart Pole, min max normalization performs

significantly better, having almost every detector a perfect
detection score. The main reason for this can be that in a
normal execution of Cart Pole with a perfect policy, every
state it visits is really similar as it tries to keep the cart to
the center of the screen and the pole as vertical as possible;
this means that by doing min max normalization, if a sin-
gle new state has a value lower than 0 or greater than 1 it
is a strong indication of an adversarial attack. In contrast, in
other environments, the states are a lot more varied, hence,
a z-score normalization helps distinguish the most common
states than the more uncommon. Furthermore, three detec-
tors shine above others; DBSCAN, KNN-Hyper and Gaus-
sian Mixture having a performance of above 90% in the best
normalization method for every environment, however, this
is while having a perfect recovery, so the performance also
has to be analyzed with the recovery system.

To this end, the full defense system is now tested the same
way as the detection system. Thereforere, now, when a new
perceived transition is classified as an adversarial one, it is
given to the recovery system which then returns the recov-
ered new state. This recovery system is tried with multiple
values for k; 1, 3, 5, 10, 15, 20, 40 and 50, and the best result
is reported, although the method is not very sensitive to the
different k values. Then the final reward achieved by the de-
fense system (rD) is measured against the reward obtained
by the unaltered victim policy (r), using as a baseline the
attacked reward (rA), both of which can be seen in Table 1.
In order to not just take into account the mean but also the

6

Acrobot Cart Pole Mountain Car Taxi
normalization min max z-score min max z-score min max z-score min max z-score

UniformAttack
Kernel Density 0.50 0.53 1.00 0.83 0.50 0.51 0.51 0.51

DBSCAN 0.65 0.97 1.00 0.63 0.63 1.00 0.99 1.00
KNN-Hyper 0.65 0.98 1.00 0.64 0.62 1.00 0.99 1.00

KNN 0.50 0.50 1.00 0.98 1.00 1.00 0.52 0.50
Gaussian Mixture 1.00 1.00 1.00 0.67 1.00 1.00 1.00 1.00
k-means global 0.50 0.60 1.00 0.91 1.00 1.00 - 1.00
k-means local 0.51 0.60 0.82 0.84 0.78 0.76 - 0.93

SVM 0.53 0.58 1.00 0.78 0.56 0.62 0.56 0.56
VF-Attack

Kernel Density 0.50 0.75 0.50 0.50 0.51 0.53 0.61 0.53
DBSCAN 0.77 0.98 1.00 0.50 0.68 1.00 0.99 1.00

KNN-Hyper 0.77 0.98 1.00 0.50 0.68 1.00 0.99 1.00
KNN 0.50 0.52 1.00 0.71 1.00 1.00 0.64 0.50

Gaussian Mixture 1.00 1.00 1.00 0.52 1.00 1.00 0.99 1.00
k-means global 0.50 0.68 1.00 0.58 1.00 1.00 - 1.00
k-means local 0.50 0.52 0.61 0.58 0.72 0.72 - 1.00

SVM 0.91 0.89 1.00 0.50 0.77 0.78 0.72 0.69
ST-Attack

Kernel Density 0.50 0.56 1.00 0.87 0.50 0.51 0.60 0.54
DBSCAN 0.63 0.99 1.00 0.67 0.66 1.00 1.00 1.00

KNN-Hyper 0.64 0.98 1.00 0.65 0.65 1.00 1.00 1.00
KNN 0.50 0.50 1.00 0.97 1.00 1.00 0.63 0.50

Gaussian Mixture 1.00 1.00 1.00 0.72 1.00 1.00 1.00 1.00
k-means global 0.50 0.59 1.00 0.90 1.00 1.00 - 1.00
k-means local 0.51 0.54 0.84 0.81 0.84 0.85 - 0.93

SVM 0.56 0.67 0.99 0.78 0.50 0.61 0.63 0.61

Table 5: Total balanced accuracy (using the transitions of 100 episodes) for the best parameter of each detector, using either
min max feature scaling, or z-score normalization

variance of the rewards, Welch’s t-test is used to compare
both rD and rA to r, and finally this can be used to measure
how the defense system affected the relative performance in
a scale from 0 to 1 with the formula tD−tA

−tA
where tD is the

t-score of rd and r, and tA is the t-score of rA and r. The
values can of course fall below 0 or raise above 1, where
below 0 means the defense system creates a performance
worse than the attack it is defending against, and above 1 a
performance greater than the unaltered victim policy. These
results can be seen in Table 6 where a performance over 90%
is highlighted.

From these results, several conclusions can be drawn.
Foremost, it can be seen that once again a distinction can
be seen between different types of normalization depending
on the environment, and said distinction corresponds to the
one described before (min max normalization working bet-
ter for Cart Pole and z-score normalization for the rest). Fur-
thermore, it can also be seen how Gaussian mixture’s perfor-
mance drops significantly (specially in Cart Pole) compared
to its performance in the detection tests, as with a perfect re-
covery it was achieving some of the highest results across
all environments. This indicates that it was overfitting to
the unaltered policy transitions, and as soon as the recov-
ery introduced a slight error, the model did not recognize
it as being valid. This could be because of a high number

of clusters compared to the number of significantly different
transitions, and lowering said number could lead to a better
generalization.

In the Acrobot environment, a big difference can be seen
from the different attacks, as with VF-attack results even
better than the ones with the unaltered policy are obtained,
however the detection accuracy was on par with the other
attacks. The reason for the big difference in the reward, is
because in Acrobot when the arm is near then top of the
screen (which is when VF performs attacks) the arm already
has velocity and a perfect recovery is not needed to finish
the episode. On the other attacks, DBSCAN achieves the
best results with a 62% and 74% recovered relative reward
in uniform and ST attacks respectively.

In the Cart Pole environment, the performance is fully re-
covered in uniform and ST attacks, however, unlike in Ac-
robot, the defense does not manage to recover the perfor-
mance against VF-attack. The reason for this is because,
since VF-attack attacks performs multiple attacks in a row,
the recovered state error starts accumulating until the detec-
tor starts failing. This was not that big of an issue in Acrobot
because these repeated attacks happen towards the end of
the episode, however, in Cart Pole the states at the begin-
ning of the episode and at the end can have an equally high
VF value, and so this carried error can start very early in the

7

Acrobot Cart Pole Mountain Car Taxi
normalization min max z-score min max z-score min max z-score min max z-score

UniformAttack
Kernel Density -1.33 -0.90 1.00 -1.05 0.03 0.16 -0.13 0.15

DBSCAN -1.08 0.62 0.96 -2.86 0.14 1.01 -0.60 0.64
KNN-Hyper -1.47 0.47 0.96 -2.59 0.12 0.99 -0.30 0.64

KNN -1.11 -0.41 1.00 -0.41 1.01 1.00 0.13 0.20
Gaussian Mixture -0.43 0.34 -1.71 -2.35 1.05 1.01 -0.25 0.74
k-means global -1.25 -0.54 1.00 -0.66 1.04 1.03 - 0.71
k-means local -0.95 -0.11 0.15 -0.89 0.52 0.52 - 0.87

SVM -1.02 -0.65 1.00 -1.90 0.07 0.16 0.39 0.17
VF-Attack

Kernel Density -1.38 1.37 -0.04 -0.15 0.02 0.18 0.16 0.75
DBSCAN -0.69 1.04 -0.11 -0.16 0.70 0.97 0.38 0.88

KNN-Hyper -0.71 1.01 -0.12 -0.21 0.71 0.95 0.44 0.74
KNN -1.00 1.48 -0.02 -0.16 1.02 1.01 0.78 0.39

Gaussian Mixture -0.24 1.35 -0.07 -0.07 1.04 1.01 0.35 1.04
k-means global -1.22 1.51 -0.02 -0.17 1.02 1.01 - 0.82
k-means local -1.20 1.47 0.12 0.09 0.58 0.75 - 1.04

SVM -0.22 1.35 -0.06 -0.22 0.38 0.82 0.97 0.96
ST-Attack

Kernel Density -0.81 0.04 1.00 -0.11 0.14 0.08 0.12 0.22
DBSCAN -0.76 0.74 1.00 -0.68 0.50 1.00 0.19 0.93

KNN-Hyper -0.78 0.53 0.99 -0.72 0.47 1.00 0.17 0.88
KNN -0.71 0.35 1.00 -0.09 1.03 1.04 0.17 0.22

Gaussian Mixture -0.13 0.58 -0.29 -0.49 1.03 1.04 0.23 0.95
k-means global -0.58 0.27 1.00 -0.05 1.03 1.02 - 0.88
k-means local -0.73 0.37 0.62 0.07 0.63 0.63 - 1.01

SVM -0.47 0.17 1.00 -0.24 0.48 0.47 0.60 0.59

Table 6: Relative recovered performance obtained by the defense using the best parameters

episode.
Finally, in the Mountain Car and Taxi environments mul-

tiple detectors achieve a performance comparable with that
of the unaltered policy, but DBSCAN and Gaussian Mixture
particularly show better results than other defenses across
both domains.

Conclusion
In this work, a two-step defense system against adversar-
ial attacks in RL is created; (i) a density estimation based
approach to detect adversarial examples and (ii) a KNN ap-
proach to recover the original states. Different methods to
estimate the density are used to show the viability of using
density estimation on experience tuples to detect adversar-
ial examples. None of the methods used relies on the use of
neural networks, which also helps against attacks that could
target the detecting network alongside the victim policy. It
is also shown that choosing the detection threshold solely
on the observed experience tuples of the victim agent is
enough to successfully detect adversaries, avoiding the need
to model any particular attack which prevents overfitting into
any particular attack and helps to generalize. Furthermore,
it is also shown how the normalization method impacts the
system and how the nature of an environment affects which
normalization is best to use.

The defense system is benchmarked against three state-of-
the-art attacks across four well-known environments, man-
aging to recover most of the lost performance for most at-
tacks and environments, albeit it suffers from the carried
recovery error in consecutive attacks that start early on an
episode. A recovery system with a lower error would fix
these problems and achieve a better performance.

Acknowledgments
This research was funded in part by JPMorgan Chase & Co.
Any views or opinions expressed herein are solely those of
the authors listed, and may differ from the views and opin-
ions expressed by JPMorgan Chase & Co. or its affiliates.
This material is not a product of the Research Department
of J.P. Morgan Securities LLC. This material should not be
construed as an individual recommendation for any particu-
lar client and is not intended as a recommendation of partic-
ular securities, financial instruments or strategies for a par-
ticular client. This material does not constitute a solicitation
or offer in any jurisdiction.

References
Abbasi, M.; and Gagné, C. 2017. Robustness to Ad-
versarial Examples through an Ensemble of Specialists.
arXiv:1702.06856.

8

Bradshaw, J.; de G. Matthews, A. G.; and Ghahramani,
Z. 2017. Adversarial Examples, Uncertainty, and Transfer
Testing Robustness in Gaussian Process Hybrid Deep Net-
works. arXiv:1707.02476.
Briola, A.; Turiel, J.; Marcaccioli, R.; and Aste, T. 2021.
Deep Reinforcement Learning for Active High Frequency
Trading.
Carlini, N.; and Wagner, D. A. 2016. Towards Evaluating the
Robustness of Neural Networks. CoRR, abs/1608.04644.
Carlini, N.; and Wagner, D. A. 2017a. Adversarial Examples
Are Not Easily Detected: Bypassing Ten Detection Meth-
ods. CoRR, abs/1705.07263.
Carlini, N.; and Wagner, D. A. 2017b. MagNet and ”Effi-
cient Defenses Against Adversarial Attacks” are Not Robust
to Adversarial Examples. CoRR, abs/1711.08478.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Max-
imum Likelihood from Incomplete Data via the EM Algo-
rithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1): 1–38.
Dolatshah, M.; Hadian, A.; and Minaei-Bidgoli, B. 2015.
Ball*-tree: Efficient spatial indexing for constrained nearest-
neighbor search in metric spaces. CoRR, abs/1511.00628.
Dong, Y.; Su, H.; Zhu, J.; and Bao, F. 2017. Towards Inter-
pretable Deep Neural Networks by Leveraging Adversarial
Examples. CoRR, abs/1708.05493.
Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X.; et al. 1996.
A density-based algorithm for discovering clusters in large
spatial databases with noise. In kdd, volume 96, 226–231.
Feinman, R.; Curtin, R. R.; Shintre, S.; and Gardner,
A. B. 2017. Detecting Adversarial Samples from Artifacts.
arXiv:1703.00410.
Fischer, T. G. 2018. Reinforcement learning in financial
markets - a survey. Technical report.
Gong, Z.; Wang, W.; and Ku, W.-S. 2017. Adversarial and
Clean Data Are Not Twins. arXiv:1704.04960.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015.
Explaining and Harnessing Adversarial Examples.
arXiv:1412.6572.
Grosse, K.; Manoharan, P.; Papernot, N.; Backes, M.; and
McDaniel, P. 2017. On the (Statistical) Detection of Adver-
sarial Examples. arXiv:1702.06280.
Gu, S.; and Rigazio, L. 2015. Towards Deep Neural
Network Architectures Robust to Adversarial Examples.
arXiv:1412.5068.
Hartigan, J. A. 1975. Clustering algorithms. John Wiley &
Sons, Inc.
Hendrycks, D.; and Gimpel, K. 2017. Early Methods for
Detecting Adversarial Images. arXiv:1608.00530.
Huang, R.; Xu, B.; Schuurmans, D.; and Szepesvari, C.
2016. Learning with a Strong Adversary. arXiv:1511.03034.
Huang, S.; Papernot, N.; Goodfellow, I.; Duan, Y.; and
Abbeel, P. 2017. Adversarial Attacks on Neural Network
Policies. arXiv:1702.02284.
Kos, J.; and Song, D. 2017. Delving into adversarial attacks
on deep policies. arXiv:1705.06452.

Lin, Y.-C.; Hong, Z.-W.; Liao, Y.-H.; Shih, M.-L.; Liu, M.-
Y.; and Sun, M. 2019. Tactics of Adversarial Attack on Deep
Reinforcement Learning Agents. arXiv:1703.06748.
Lin, Y.-C.; Liu, M.-Y.; Sun, M.; and Huang, J.-B. 2017. De-
tecting Adversarial Attacks on Neural Network Policies with
Visual Foresight. arXiv:1710.00814.
Lu, J.; Issaranon, T.; and Forsyth, D. 2017. SafetyNet:
Detecting and Rejecting Adversarial Examples Robustly.
arXiv:1704.00103.
Meng, D.; and Chen, H. 2017. MagNet: A Two-Pronged
Defense against Adversarial Examples. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, 135–147. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450349468.
Metzen, J. H.; Genewein, T.; Fischer, V.; and Bischoff,
B. 2017. On Detecting Adversarial Perturbations.
arXiv:1702.04267.
Mnih, V.; Kavukcuoglu, K.; and Davi. 2013. Playing Atari
with Deep Reinforcement Learning. arXiv:1312.5602.
Papernot, N.; McDaniel, P.; Wu, X.; Jha, S.; and Swami, A.
2016. Distillation as a Defense to Adversarial Perturbations
Against Deep Neural Networks. In 2016 IEEE Symposium
on Security and Privacy (SP), 582–597.
Schölkopf, B.; Williamson, R. C.; Smola, A.; Shawe-Taylor,
J.; and Platt, J. 2000. Support Vector Method for Nov-
elty Detection. In Solla, S.; Leen, T.; and Müller, K., eds.,
Advances in Neural Information Processing Systems, vol-
ume 12. MIT Press.
Sethi, T. S.; and Kantardzic, M. 2018. Data driven ex-
ploratory attacks on black box classifiers in adversarial do-
mains. Neurocomputing, 289: 129–143.
Song, Y.; Kim, T.; Nowozin, S.; Ermon, S.; and Kushman, N.
2017. PixelDefend: Leveraging Generative Models to Un-
derstand and Defend against Adversarial Examples. CoRR,
abs/1710.10766.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2014. Intriguing proper-
ties of neural networks. arXiv:1312.6199.
Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.;
Boneh, D.; and McDaniel, P. 2020. Ensemble Adversarial
Training: Attacks and Defenses. arXiv:1705.07204.
van den Oord, A.; Kalchbrenner, N.; and Kavukcuoglu,
K. 2016. Pixel Recurrent Neural Networks. CoRR,
abs/1601.06759.
Wu, Y.; Bamman, D.; and Russell, S. 2017. Adversar-
ial training for relation extraction. In Proceedings of the
2017 Conference on Empirical Methods in Natural Lan-
guage Processing, 1778–1783.
Yuan, X.; He, P.; Zhu, Q.; and Li, X. 2019. Adversarial ex-
amples: Attacks and defenses for deep learning. IEEE trans-
actions on neural networks and learning systems, 30(9):
2805–2824.
Zhao, P.; and Lai, L. 2020. Analysis of KNN Density Esti-
mation. arXiv:2010.00438.

9

PFPT: a Personal Finance Planning Tool by means of Heuristic Search and
Automated Planning

Alberto Pozanco, Kassiani Papasotiriou, Daniel Borrajo*

J.P. Morgan AI Research
{alberto.pozancolancho, kassiani.papasotiriou, daniel.borrajo}@jpmorgan.com

Abstract

A crucial component to an individual’s financial well-
being is staying proactive in terms of the personal fi-
nances. Seeking such advice helps individuals or house-
holds to plan, save, and spend monetary resources over
time, while taking into account various financial risks
and future life events. Receiving such advice at the in-
dividual level usually happens by consulting a personal
finance advisor which can be very expensive. In this pa-
per we present PFPT, a Personal Finance Planning Tool
that can use different search approaches to propose ac-
tionable plans to end users in order to achieve their fi-
nancial goals. We evaluate PFPT in different problems
using two different approaches: domain-independent
automated planning and domain-dependent heuristic
search. Results show that while automated planning
struggle to generate good plans in this domain, our sug-
gested heuristics are able to scale on generating realistic
financial plans.

Introduction
Setting financial goals and planning ahead plays a signifi-
cant role in ensuring financial health for an individual or a
household. Personal finance planning activities include man-
aging monetary resources through expenditure, investments,
and savings, while considering various life events, risks and
goals. The benefits of financial planning have been studied
and quantified using economic well-being indicators in both
empirical (Peng et al. 2007; Farinella, Bland, and Franco
2017; Warschauer and Sciglimpaglia 2012) and theoretical
settings (Hanna and Lindamood 2010).

The most common way of seeking financial advice is
by consulting a personal finance professional who can help
clients make decisions about investments, budgeting or other
courses of action to achieve their goals. Such services are of-
ten very expensive and thus inaccessible to a lot of people.
Alternatives to speaking to an advisor include personal fi-
nance assessment tools and questionnaires which offer semi-
personalized advice to users based on their input. However,
these tools fail to recommend actionable points of advice on
a more personal and detailed level.

*On leave from Universidad Carlos III de Madrid
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We present in this paper PFPT, a Personal Finance Plan-
ning Tool, which offers financial advice at the individual
level. It allows users to define both long-term and short-
term financial goals and recommends actions to successfully
achieve them based on their financial habits. We model this
problem from a search perspective by defining states, actions
and goals and apply domain-independent automated plan-
ning and domain-dependent heuristic search to recommend
plans that maximize the likelihood of being executed based
on the individual financial habits. To the best of our knowl-
edge this is the first financial tool that applies planning and
search techniques for personal finance management.

Previous technical methods of financial planning include
expert systems which try to mimic the knowledge and ex-
perience of a human experts. The systems collect detailed
user information regarding an individual’s financial state
and consists of a rules base to produce possible solutions
to a goal (Kindle et al. 1989; Phillips, Nielson, and Brown
1992). More recent approaches used rule-based approaches
based on different metrics and definitions on financial well-
being (Althnian 2021). The main weakness of these ap-
proaches is that they do not provide flexible and detailed
solutions and do not take into account the feasibility of the
recommended plans. Other methods use Deep Reinforce-
ment Learning techniques that often address a subset of fi-
nancial goals, such as portfolio management (Irlam 2018;
2020).

The rest of the paper is organized as follows. In the next
section we provide some background on numerical plan-
ning. Then, we define the problem solved by PFPT: find-
ing a plan to go from an initial finance state to a goal fi-
nance state by maximizing the likelihood of the employed
actions. After that, we introduce two different approaches
to solve the PFPT problem: domain-independent automated
planning and domain-dependent heuristic search, where we
define a set of heuristics to guide the search. Later, we eval-
uate both approaches, focusing on analyzing the behavior of
the different heuristics. Finally, we draw our main conclu-
sions and outline future work.

Background
We use the standard classical STRIPS definition of a plan-
ning task, augmented with numeric variables (Fox and Long
2003). Formally:

10

Definition 1. A numeric planning task is a tuple Π =
⟨F,A, I,G⟩, where F is a set of boolean and numeric vari-
ables, A is a set of actions, I ⊆ F is the initial state and
G ⊆ F is a set of goals.

We denote with S the set of all states of the planning task
Π. A (full) state s ∈ S is a valuation of all the variables in F ;
a boolean value for all the boolean variables and a numeric
value for the numeric ones.

Each action a ∈ A is defined in terms of its precon-
ditions (pre(a)) and effects (eff(a)). Effects can set to true
the value of a boolean variable (add effects, add(a)), set to
false the value of a boolean variable (del effects, del(a)),
and change the value of a numeric variable (numeric ef-
fects, num(a)). Action execution is defined as a function
γ : S,A → S′; that is, it defines the state that results
of applying an action in a given state. It is usually defined
as γ(s, a) = (s\del(a))∪add(a) if pre(a)⊆ s when only
boolean variables are considered. When using numeric vari-
ables, γ should also change the values of the numeric vari-
ables (if any) in num(a), according to what the action speci-
fies; increasing or decreasing the value of a numeric variable
or assigning a new value to a numeric variable. If the precon-
ditions do not hold in s, the state does not change.

The solution of a planning task is called a plan, and it
is a sequence of instantiated actions that allows the system
to transit from the initial state I to a state s where goals
are true. Therefore, a plan π = ⟨a1, a2, . . . an⟩ solves a
planning task Π (valid plan) iff ∀ai ∈ π, ai ∈ A, and
G ⊆ γ(. . . γ(γ(I, a1), a2) . . .), an). In case the cost is rele-
vant, each action can have an associated cost, c(ai),∀ai ∈ A
and the cost of the plan is defined as the sum of the costs of
its actions: c(π) =

∑
i c(ai),∀ai ∈ π. A plan with minimal

cost is called optimal.

PFPT Problem Definition
We aim to find realistic financial plans that allow users to go
from their current financial state to their goal financial state.
We define a financial state as follows:

Definition 2. A financial state is a tuple s =
⟨t, Inc,DExp,FExp, B⟩, where:

• t ∈ N is a time step
• Inc ∈ R is the income per time step
• DExp ∈ R are the discretionary expenses per time step
• FExp ∈ R are the fixed expenses per time step
• B = (B̂ + Inc − DExp − FExp) is the account balance,

where B̂ is the account balance of s’s parent at t− 1.

The initial financial state is fully specified, while the goal
financial state is usually partially specified. For example, the
goal state could specify that the balance at a given time step
should be higher than a given quantity.

At each time step, some actions can be applied in order
to change the financial state into another one. We define
two types of actions: income increases and discretionary
expenses decreases. We assume the fixed expenses can-
not be changed, or will be very unlikely changed. Actions
might produce changes in the financial state. For example,

an income increase of 20% in state st will result in a new
state at the next time step st+1 with income Inc(st+1) =
1.2 × Inc(st). Besides these effects over the financial state,
each action has associated a likelihood score, which is a real
number between 0 and 1 that reflects how feasible or prob-
able is that a user executes the action. This likelihood score
can be given by users or inferred from their financial habits.
For example, increasing the income by 0% will have a higher
likelihood score than increasing the income by 20%, since
the former is an easier or more feasible action than the lat-
ter. Table 1 summarizes a potential set of actions along with
their effects to the financial state and their likelihood score.
We will use this set of actions as an example in the rest of
the paper.

Income increase and discretionary expenses decrease ac-
tions can be combined to generate joint actions. Assuming
the actions described in Table 1, we would have 9 possible
joint actions that can be applied at each time step, i.e., [In-
crease Inc 10%, Decrease DExp 0%], [Increase Inc 20%,
Decrease DExp 10%], etc. A plan π solves this problem op-
timally if it achieves the financial goal state by maximizing
the likelihood product of its actions. Formally:

max
∏

a∈π

likelihood(a) (1)

We face two obstacles when trying to use search algorithms
to (optimally) solve the problem as defined in Expression 1:
(1) plan optimality is defined as a product, while search al-
gorithms ordering functions are typically additive; and (2)
plan optimality is defined as a maximization task (maximize
likelihood), while most search algorithms aims to minimize
a given function. To overcome the first problem, we compute
the logarithm of each action’s likelihood score so we can
sum them. To overcome the second problem, we transform
the maximization task into a minimization task by subtract-
ing the logarithm of the likelihood score from one. By per-
forming these two transformations, now we have the follow-
ing additive cost function that search algorithms can mini-
mize:

c(a) = 1− log(likelihood(a)) (2)

Given a plan π and its cost c(π), we can compute back its
likelihood score by applying the following operation:

likelihood(π) = exp(−(c(π)− |π|)) (3)

In the next sections we describe two different
search-based approaches to solve this problem: domain-
independent automated planning and domain-dependent
heuristic search.

Automated Planning Approach
The first approach uses automated planning models and
planners to generate solutions. The domain is composed of
actions that model the actions described in Table 1. As an ex-
ample, the action that increases the income, would be mod-
eled as shown in Figure 1.

At each time step, we only allow the execution of one ac-
tion of each kind: modify income or modify expenses. This

11

Action Effect Likelihood
Increase Income by 0% - 1.0
Increase Income by 10% Inc(st+1) = 1.1× Inc(st) 0.8
Increase Income by 20% Inc(st+1) = 1.2× Inc(st) 0.6

Decrease Discretionary Expenses by 0% - 1
Decrease Discretionary Expenses by 10% DExp(st+1) = 0.9× DExp(st) 0.9
Decrease Discretionary Expenses by 20% DExp(st+1) = 0.8× DExp(st) 0.8

Table 1: Actions’ summary.

(:action increase-income
:parameters (?p - percentage

?t - time-step)
:preconditions

(and (current-time ?t)
(not (done-income ?t)))

:effects
(and (increase (total-cost)

(likelihood ?p))
(increase (income ?t)

(* (income ?t)
(percentage ?p)))

(increase (balance ?t)
(income ?t))

(done-income ?t)))

Figure 1: Model of the action that increases the income by
20%.

action is the only one defined to modify income and sum-
marizes all possible increase operations over income. The
parameters of the action are a time step and a percentage of
increase. Since we do not need complex temporal reason-
ing, we consider discrete temporal problems, so we model
time explicitly as a sequence of time steps. Percentages are
also represented as discrete amounts and are defined in the
problem description. In the case of the percentages defined
in Table 1, we would define three objects of type percentage
in the problem for the income (0, 10 and 20) and another
three for modifying the expenses (also 0, 10 and 20). The
reason to separate income percentages from expenses per-
centages is that we need also to define their corresponding
likelihoods (predicate likelihood) which have different val-
ues. For instance, the likelihood of increasing income in a
20% is 0.6, while the likelihood of decreasing the expenses
in a 20% is 0.8.

The preconditions of the actions are that we are at a given
time step and that we did not update yet the income at that
time step. The expected effects are that the income will in-
crease based on the percentage, the balance is increased with
the new income, and the total cost is updated. We use as
cost the one defined in Equation 2. Apart from the increase-
income and decrease-expenses, the domain also includes a
move-time action that progresses time.

The problem description contains objects related to the set
of time steps and the percentages. If the user sets as goal to
have a balance x at time step T , the problem will be automat-
ically generated with all the time steps between 0 and T . The

initial state defines the initial income, balance, and expenses,
as well as the likelihoods of each percentage, the initial total
cost of 0, the initial time step of 0 and the needed next pred-
icates to connect in sequence all the time steps. The goal
description is compiled from the user goals, as for instance,
the balance being greater than a given value at a given time
step.

The plans are sequences of actions that achieve the goals
from the initial state. They are comprised of a joint action
(income, expenses) at each time step, plus a move-time ac-
tion to progress to the next time step. As an example, a plan
would be:

(increase-income t0 p-inc-0)
(decrease-expenses t0 p-exp-20)
(move-time t0 t1)
(increase-income t1 p-inc-10)
(decrease-expenses t1 p-exp-0)

that would not increase income and decrease expenses in
a 20% in the first time step, and increase income in a 10%
and not modify expenses in the second time step.

The main drawback of using planning for solving this task
is that it is a numerical planning task. First, there are very
few planners that can handle this kind of domain complexity.
Second, to the best of our knowledge, there is no planner
that can perform optimal numerical planning. Thus, we have
defined a search-based solution that allows us to compute
optimal solutions for this task which is presented in the next
section.

Heuristic Search Approach
We use the most popular algorithm for optimal search,
A∗(Hart, Nilsson, and Raphael 1968), to solve this prob-
lem in a domain-dependent fashion. A∗ uses a function
f(s) = g(s) + h(s) to order the nodes in the open list. The
solutions returned by A∗ are guaranteed to be optimal if the
heuristic h is admissible, i.e., it does not over-estimate the
cost of reaching the goal from any state.

The cost of reaching a state s, g(s), is computed using
Equation 2. In order to estimate the cost of reaching the goal
from s, h(s), we propose the following domain-dependent
heuristics.

Minimum Cost Action
The first heuristic, which we called Min, consists on choos-
ing the cost of the cheapest joint action c(a)min and mul-
tiply it by the number of remaining time steps: h(s) =
c(a)min×(t(G)−t(s)). In our case, the cheapest joint action

12

is to do nothing, i.e., increase the salary by 0% and decrease
the discretionary expenses by 0%.

Lemma 1. Min is admissible.

Proof. By construction, at each time step, there is no
cheaper joint action than c(a)min. The result of multiply-
ing the minimum cost by the (t(G) − t(s)) will necessarily
be less than or equal h∗. Therefore, Min is admissible.

Greedy
The next heuristic we propose consists on solving a relax-
ation of the problem where only the same action can be ap-
plied at every time step. In other words, the number of poten-
tial plans is limited to the number of joint actions considered.
The procedure that computes the heuristic is outlined in Al-
gorithm 1. The algorithm receives as input the current (s)

Algorithm 1 Greedy Heuristic
Require: s,G,A,Admissible
Ensure: GH

1: GH←∞
2: remainingTimeSteps← t(G)− t(s)
3: sortedActions← SORTBYCOST(A)
4: for a ∈ sortedActions do
5: s′ ← EXECUTE(remainingTimeSteps, a, s)
6: if G ⊆ s′ then
7: if Admissible = True then
8: GH← c(a)
9: else

10: GH← c(a)× remainingTimeSteps
11: return GH
12: return GH

and goal (G) state, the available actions (A), and a parame-
ter that indicates whether we are interested in the heuristic to
be admissible or not. The algorithm first computes the num-
ber of remaining time steps from s (line 2). If the goal state
does not specify any time step, this is set to a high number.
Then, the actions in A are sorted according to their cost as
per Equation 1. Next, the algorithm iterates over the sorted
list of actions, executing the given action a from s for the
number of remaining steps, yielding a state s′. If the goal is
satisfied in s′, the algorithm finishes and returns the heuristic
estimate. This heuristic value will depend on the admissibil-
ity parameter. If we are interested in an admissible heuristic
(GHa), Algorithm 1 will return the cost of executing that
action, c(a).

Lemma 2. GHa is admissible.

Proof. Suppose GHa returns c(a) and c(a) > h∗. It means
that there is a solution that only uses actions with a cost less
than c(a). If it would be using actions whose cost would
be greater than c(a), then c(a) would be less than h∗, so the
assumption would be false. And, if there would be a solution
using only a subset of less costly actions, it would had been
found before a, since they are studied from less costly to
more costly. Thus, c(a) is less than h∗, and it is admissible.

If we want a more informative but inadmissible heuristic
(GHi), Algorithm 1 returns the cost of executing that action
multiplied by the number of remaining steps.

Lemma 3. GHi is inadmissible.

Proof. The heuristic value returned by GHi considers exe-
cuting the cheapest possible action a that reaches the goal
(ensured by the actions’ sorting in line 3 and the loop in
line 4) in all the remaining time steps. However, reaching
the goal state could only require executing a in a subset of
the remaining time steps together with some lower cost ac-
tions in the other steps. Thus, GHi could return greater val-
ues than h∗ for some state/goal combinations, so it is inad-
missible.

If after iterating over all the possible actions the goal can-
not be achieved, Algorithm 1 will return ∞, meaning that
the goal is not reachable from a.

Heuristics Behavior Example
Let us exemplify how the heuristics work and their accuracy
by computing them at the initial state (h(I)) of the following
PFPT problem:

I = ⟨t = 0, Inc = 5,DExp = 2,FExp = 2, B = 10⟩
G = ⟨t = 4, B = 17⟩

The optimal solution to this problem has a cost of 8.43
(h∗(I)). The minimum cost action heuristic Min returns the
cost of the cheapest action multiplied by the number of re-
maining time steps. The cheapest joint action is to Increase
Inc 0% and Decrease DExp 20%, and has an associated cost
of 2. After multiplying it by the 4 remaining time steps, Min
will return a cost of 8, which is a lower bound on h∗(I).
The greedy algorithm returns that [Increase Inc 0%, De-
crease DExp 20%] is the cheapest joint action that can be
subsequently executed from I in the remaining time steps to
achieve the goal. This joint action has an associated cost of
2.22. Therefore, GHa will return that cost, which is a lower
bound on h∗(I), while GHi will return 2.22 × 4 = 8.88,
which is an upper bound on h∗(I).

Evaluation
We randomly generate PFPT problems of increasing diffi-
culty by increasing the time horizon at which the goal bal-
ance has to be achieved. To generate hard problems, we (1)
set the goal balance to be twice the initial balance; and (2)
make the expenses per time step (sum of DExp and FExp) to
be a random ratio between 0.9 and 1 of the income per time
step, thus rendering problems where little savings are gen-
erated if the initial financial state remains unchanged. We
solve these problems with the previously described heuris-
tics: Min, GHa and GHi, plus Blind, which we will use as
a baseline to compare heuristics’ search performance. All
the heuristics have been implemented in Python 3.6, as well
as the search algorithm, which is a vanilla implementation
of A∗. Heuristic search experiments were run in Intel(R)
Xeon(R) CPU E3-1585L v5 @ 3.00GHz machines with
64GB of RAM. We also tried to solve the PDDL version

13

of these problems using LPG (Gerevini, Saetti, and Serina
2004), a stochastic planner for numerical planning. Since
the planner is stochastic, we ran the planner five times on
each problem. Automated planning experiments were run in
an Apple M1 Pro machine with 16GB of RAM.1

Automated Planning vs Heuristic Search
For the first set of experiments, we generated 10 random
problems with the time horizon t set to 4. LPG is only able
to solve 4 out of the 10 problems, reporting that no solu-
tion could be found for the other 6. The reason LPG failed
to solve the problems was not due to time nor memory con-
straints. The execution time in the solved problems is always
below 2 seconds, but the solutions returned are suboptimal.
Given that the machine where LPG was run is different than
the machine where the rest of code was run, the time can-
not be compared directly. Instance #9 is the problem where
LPG gets the closest to the optimal, returning a plan with
cost 8.80, while the optimal cost is 8.32. On the other hand,
instance #8 is where LPG obtain the worst results, returning
a plan with cost 10.19 in one of the executions, while the op-
timal cost is again 8.32. Cost differences might look small,
but they translate into large likelihood score differences. In
instance #8, the optimal plan has a likelihood score of 0.73,
while the plan returned by LPG has a likelihood score of
0.11, meaning it would be a very unrealistic plan to propose
to an end user.

Heuristic Plan Cost Expanded Generated Search Time (s)
Blind 8.80 1698.8 14350.0 56.5
Min 8.80 5320.3 10310.1 60.1
GHa 8.80 344.7 2931.2 1.6
GHi 8.81 11.3 91.2 0.0

Table 2: Heuristics comparison in random problems with
t = 4. Numbers represent average across 10 problems. Best
values are shown in bold.

Table 2 summarizes the results of the different heuristics
in the same set of problems. In this case, all the heuristics are
able to solve all the problems. As expected, the three admis-
sible heuristics return the optimal plan in all the problems
(average plan cost of 8.80), while GHi returns a slightly sub-
optimal solution in one of the problems, thus increasing the
average plan cost to 8.81. In terms of search efficiency, Min
is not able to outperform Blind in this problem setting. The
distribution of f values of both searches is shown in Fig-
ure 2. As we can see, Min generates search spaces where
many states have the same f value of 8, generating a large
plateau at the beginning of the open list. This occurs because
many states have the same f even if they are still far from
reaching the goal due to the heuristic value being a constant
function of the remaining time steps, which translates into
more expanded nodes. On the other hand, Blind generates
more diverse f values, with most of the nodes having f val-
ues between 11 and 12, therefore being able to better dis-
criminate between the states that are closer to the goal time

1As the following results show, the fact that we are using differ-
ent machines is not relevant in this comparison.

Figure 2: Open list f values distribution at the end of the
search when using Blind (upper histogram) and Min (lower
histogram) heuristics.

horizon. This behavior could not be substantially improved
even when considering different tie-breaking rules.

GHa reduces the search effort by an order of magnitude,
returning optimal solutions in less than two seconds on av-
erage. The inadmissible greedy heuristic GHi achieve the
best results in terms of search efficiency, expanding only
around 11 states to reach the goal. This represents a 0.6%
of the states that a Blind search needs to expand, meaning
this heuristic is really informative. GHi also yields faster
searches that reach the goal in less than a second.

Heuristics Scalability and Optimality
As we have seen, we cannot rely on LPG to solve this kind of
problems. The behavior of the Blind, Min, and GHa heuris-
tics also quickly deteriorates as we increase t. For example,
Blind and Min are not able to find a solution for any of the 10
problems with t ≥ 5 in less than 1800s, while GHa cannot
find solutions within that time limit in most problems with
t ≥ 6. Hence, we evaluated the scalability and performance
of GHi in harder problems with longer time horizons. The
scalability of GHi is shown in Figure 3, where we use vi-
olinplots to show the search time distribution when solving
problems with t = 4, 6, 8, and 10. As we can see, solving
time grows exponentially with the time horizon. However,
GHi is able to generate fast searches that can find the solu-
tion in less than a second in many of the problems. We are
not solving problems with larger time horizons because our
vanilla implementation of A∗ is not able to scale in some of

14

Figure 3: Search time (log scale) needed to find a solution
by GHi in problems of increasing difficulty, i.e., longer time
horizons.

Figure 4: Plan cost as returned by GHa and GHi in problems
of increasing difficulty, i.e., longer time horizon.

the bigger instances. However, our suggested greedy heuris-
tics would be likely able to scale provided a better imple-
mentation of A∗, which we leave as future work.

Finally, we also wanted to better understand GHi’s op-
timality loss in relation to the optimal solution. Figures 4
and 5 show the plan cost and likelihood respectively as re-
turned by GHa and GHi in problems with t = 4 and t = 5,
where GHa can compute the optimal plan within the time
bound. As we can see in Figure 4, the optimality gap is
really small (less than 1% on average), meaning that both
heuristics achieve plans with very similar costs. GHi is able
to compute the optimal plan in 11 out of the 20 problems.
We see the biggest optimality gap in a problem with t = 5
(problem instance #10), where there is a 0.93% optimality
gap. When we translate the costs of this problem back into
likelihood scores (see Figure 5), we get that the optimal plan
likelihood is 0.27, while the likelihood of the plan returned
by GHi is 0.24. On average, GHa returned plans with an

Figure 5: Plan likelihood as returned by GHa and GHi in
problems of increasing difficulty, i.e., longer time horizon.

optimal likelihood score of 0.54, while GHi returned plans
with a likelihood score of 0.52.

Conclusions and Future Work
We have proposed PFPT, a personal finance planning tool
that offers financial advice at the individual level. The sug-
gested financial plans achieve users’ financial goals by max-
imizing the likelihood of being executed based on their fi-
nancial habits. We model this problem from a search per-
spective and propose two different approaches to solve
it: domain-independent automated planning and domain-
dependent heuristic search. We evaluated both approaches
in a set of financial problems with increasing complexity.
Results showed that, as expected, while automated planning
struggles to generate good plans in this domain, our sug-
gested heuristics are able to scale on generating realistic fi-
nancial plans.

Currently, our set of actions is limited to income increases
and discretionary expenses decreases. We are exploring how
to enrich the action space to include actions such as invest in
different financial products that might yield different interest
rates. We would also like to have the ability to impose arbi-
trary constraints to the generated plans. For example, users
might want to see plans that do not suggest any income in-
crease. Finally, we are currently assuming constant likeli-
hood scores. In future work we would like to consider con-
ditional likelihood scores, where the likelihood of executing
one action depends on the previous actions.

Acknowledgements
This paper was prepared for informational purposes by the
Artificial Intelligence Research group of JPMorgan Chase
& Co. and its affiliates (“JP Morgan”), and is not a prod-
uct of the Research Department of JP Morgan. JP Morgan
makes no representation and warranty whatsoever and dis-
claims all liability, for the completeness, accuracy or relia-
bility of the information contained herein. This document is
not intended as investment research or investment advice, or
a recommendation, offer or solicitation for the purchase or

15

sale of any security, financial instrument, financial product
or service, or to be used in any way for evaluating the merits
of participating in any transaction, and shall not constitute a
solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would
be unlawful.

References
Althnian, A. 2021. Design of a rule-based personal finance
management system based on financial well-being. Interna-
tional Journal of Advanced Computer Science and Applica-
tions 12(1).
Farinella, J.; Bland, J.; and Franco, J. 2017. The impact of
financial education on financial literacy and spending habits.
International Journal of Business, Accounting, & Finance
11(1).
Fox, M., and Long, D. 2003. Pddl2. 1: An extension to
pddl for expressing temporal planning domains. Journal of
artificial intelligence research 20:61–124.
Gerevini, A.; Saetti, A.; and Serina, I. 2004. Planning with
numerical expressions in lpg. In Proceedings of the 16th
European Conference on Artificial Intelligence, 667–671.
Hanna, S. D., and Lindamood, S. 2010. Quantifying the
economic benefits of personal financial planning. Financial
Services Review 19(2).
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4(2):100–
107.
Irlam, G. 2018. Financial planning via deep reinforcement
learning ai. Available at SSRN 3201703.
Irlam, G. 2020. Multi scenario financial planning via deep
reinforcement learning ai. Available at SSRN 3516480.
Kindle, K. W.; Cann, R. S.; Craig, M. R.; and Martin, T. J.
1989. Pfps-personal financial planning system. In IAAI.
Peng, T.-C. M.; Bartholomae, S.; Fox, J. J.; and Cravener, G.
2007. The impact of personal finance education delivered
in high school and college courses. Journal of family and
economic issues 28(2):265–284.
Phillips, M. E.; Nielson, N. L.; and Brown, C. E. 1992. An
evaluation of expert systems. Journal of Financial Counsel-
ing and Planning 3(1).
Warschauer, T., and Sciglimpaglia, D. 2012. The economic
benefits of personal financial planning: An emperical analy-
sis. Financial Services Review 21(3).

16

Filtering Top-k Relevant Plans

Mauricio Salerno, Miguel Tabernero, Raquel Fuentetaja, Alberto Pozanco
Department of Computer Science and Engineering

Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain
msalerno@pa.uc3m.es, mtaberne@pa.uc3m.es, rfuentet@inf.uc3m.es, alberto.pozanco@gmail.com

Abstract

The automatic generation of a set of plans rather than just one
is a relevant problem in Automated Planning, with a wide
range of applications, including applications to finance and
banking. Such sets can be computed through top-k planning,
which aims to find the best k plans that solve a planning
task. Existing approaches to solve the top-k planning problem
might generate plans that are not relevant for some practical
applications. In particular, plans might contain actions that
can be removed from the plan while maintaining its validity.
These unnecessary actions not only increase the cost of plans,
but might particularly reduce the utility of top-k planning. In
this work we propose an Automated Planning approach for
identifying and eliminating redundant actions from plans, and
show how to incorporate this method into top-k planning to
guarantee that the generated plans do not contain redundant
actions. We perform an empirical analysis to study the ex-
istence of redundant actions in plans in several benchmarks,
and analyze how top-k planning methods are affected when
forced to find plans without redundant actions.

Introduction
There exist many planning applications where it is neces-
sary to compute a set of plans rather than only one. This
is the case of tools where planning is supporting human
decision makers, who are typically keen on exploring dif-
ferent alternatives and scenarios. Having a diverse set of
plans (Srivastava et al. 2007; Roberts, Howe, and Ray 2014)
at hand when making these decisions is crucial in many fi-
nance applications, that include but are not limited to: goal
and plan recognition (Ramı́rez and Geffner 2009; Sohrabi,
Riabov, and Udrea 2016) to predict customer goals in order
to provide adequate services to them (Borrajo, Gopalakr-
ishnan, and Potluru 2020; Borrajo and Veloso 2020; Bor-
rajo, Veloso, and Shah 2020); planning approaches to predict
stock market movements (Mund, Vallati, and McCluskey
2020); or cybersecurity (Boddy et al. 2005; Pozanco et al.
2021), where experts are interested in understanding a set of
possible attacks to communication networks and protocols.

Top-k planning (Riabov, Sohrabi, and Udrea 2014; Katz
et al. 2018; Speck, Mattmüller, and Nebel 2020) is one of the
existing approaches to compute sets of plans, which aims to

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Two planning tasks of a navigation domain where
a robot has to sample a rock. The robot can move to adjacent
white tiles.

find the best k plans solving a planning task. In top-k plan-
ning, as in other Automated Planning problems, the qual-
ity of plans is measured using a cost function. However,
there are additional notions of quality that can be consid-
ered. Quality can be also defined from the point of view
of plan relevance or justified plans (Fink and Yang 1992).
From a domain independent perspective, relevant plans can
be understood as those that do not contain loops and or irrel-
evant/unnecessary actions (Fink and Yang 1992; Nebel, Di-
mopoulos, and Koehler 1997). From a domain specific point
of view more subtle notions of relevancy could be consid-
ered.

Current planners guided by powerful heuristics will prob-
ably not include (many) irrelevant actions in the output
plan, but this is not enough for top-k planning. Iterative ap-
proaches to top-k have shown promising results (Katz et al.
2018). However, resulting plans include more irrelevant in-
formation as more iterations are carried out, to the point that
truly alternative plans can not be easily distinguished from
those that were extended with unnecessary operators. This
may have an important negative impact in applications. For
instance, in goal and plan recognition, agents are usually
assumed to follow optimal or at least sub-optimal plans to
achieve their goals (Ramı́rez and Geffner 2010), but redun-
dant actions do not contribute to achieve the goals to such
task. Also, it is not useful to consider these plans in explain-
able AI, since they are of little interest for users.

As an illustrative example of the notion of plan relevance
consider the planning task depicted in Figure 1, where a

17

robot has to take a sample of the red rock situated on the
top. Here, the plans that represent the different routes the
agent can use to sample the red rock can be considered rele-
vant of justified. In contrast, any plan where the agent passes
through the same cell more than once would not be justi-
fied, since the actions that create the loop can be removed
from the plan and it still achieves the goal. Another plan that
would not be justified is one where the agent reaches the
goal state (samples the rock) and then executes additional
actions: these subsequent actions can be subtracted from the
plan, and generate equally valid plans. The same occurs in
plans where the robot samples also the grey rock, which is
not necessary to sample. Figure 1 shows two planning prob-
lems. For the one on the left there are many relevant plans,
while for the one on the right there is only one relevant plan.
It is not difficult to find additional examples in large-scale
real-world applications where the domain can include many
operators, static facts and objects, which might be irrelevant
for specific goals and initial situations. The number of pos-
sible non-relevant plans can be quite large, and these plans
are somehow artificial, since they do not represent actual
different alternatives to achieve the goals.

In this work, we focus on two ideas: (1) filtering unneces-
sary actions in a plan post-optimization step, in the same line
as some previous works (Nakhost and Müller 2010; Chrpa,
McCluskey, and Osborne 2012b,a; Balyo, Chrpa, and Ki-
lani 2014); specifically, we contribute with a compilation
that encodes the problem as an Automated Planning task, so
that in can be solved using an off-the-shelf automated plan-
ner; and (2) incorporating the notion of plan justification in
the context of top-k planning; specifically, we present an ap-
proach to find relevant/justified plans when using iterative
approaches to top-k planning. This work expands on top-k
and is closely related with the ideas of top-quality (Katz,
Sohrabi, and Udrea 2020) and diverse planning (Katz and
Sohrabi 2020), since these approaches also find plans that
should meet certain conditions.

The rest of the paper is organized as follows. Next section
introduces basic notions of classical planning, plan justifica-
tion and top-k planning. Then, we define a planning compi-
lation for plan justification. After that, we describe how to
integrate it with top-k planning. Next, we include an empiri-
cal evaluation on how the incorporation of plan justification
affects top-k planning. Finally, we discuss related work and
draw some conclusions.

Background
Classical Planning
A classical planning task (Fikes and Nilsson 1971) is defined
as a tuple Π = (F ,A, I,G), where F is a set of proposi-
tions; A is a set of actions; I ⊆ F is the initial situation,
encoding what propositions are true initially; and G ⊆ F is
a set of goal propositions. Every a ∈ A has preconditions,
denoted as pre(a) ⊆ F , added effects add(a) ⊆ F and
negative effects del(a) ⊆ F .

A planning task Π defines a state model which states
s ∈ S are subsets of F and are represented by the flu-
ents that are true in the corresponding state. In this model,

the initial state is si = I, and the goal states are those
sg that include the goals G ⊆ sg . The actions a ∈ A
that are applicable in a state s, denoted as A(s), are those
for which pre(a) ⊆ s. The transition function is γ, where
γ(s, a) = (s \ del(a)) ∪ add(a) represents the state s′ that
results from the application of the action a in state s.

A solution or valid plan for Π is an action sequence
π = ⟨a1, . . . , an⟩ that induces a state sequence Sπ =
⟨s0, . . . , sn⟩ such that s0 = I and, for each i such that
1 ≤ i ≤ n, ai is applicable in si−1 and si = γ(si−1, ai.
A plan π solves Π if and only if G ⊆ sn. We denote the set
of all the plans that solve a planning task Π as PΠ. Each ac-
tion a ∈ A is assumed to have a non-negative cost c(a), so
that the cost of a plan is c(π) =

∑
c(ai). A plan is optimal

if it has minimum cost.

Top-k planning
The objective of a top-k planning problem (Riabov, Sohrabi,
and Udrea 2014; Sohrabi, Riabov, and Udrea 2016) is to find
the k plans of lowest cost for a planning task.

Definition 1. A top-k planning problem is a tuple (Π, k),
where Π = (F ,A, I,G) and k ∈ N. The goal is to find a set
of plans Pk ⊆ PΠ such that:

• For each π ∈ Pk, if there exists a plan π′ with c(π′) <
c(π) then π′ ∈ P .

• |Pk| ≤ |PΠ|, where |Pk| < k implies Pk = PΠ.

Note that the plans in Pk are not required to meet any con-
dition other than being those with the k lowest costs. This
means that algorithms that solve the top-k planning problem
might find plans with actions or set of actions that are not rel-
evant/justified under certain settings. The conditions a plan
must meet to be relevant might be domain dependent and
depend on the semantics of the planning task. Nevertheless,
plan justification has been widely studied, with special in-
terest in finding redundant actions that can be removed from
the plan without affecting its validity. We want to introduce
this notion into top-k planning.

Katz et al. (2018) proposed an iterative approach to solve
the top-k planning problem. The main idea of their algorithm
is to find additional solutions to a planning task by reformu-
lating the original task. The reformulations forbid already
found plans, so that previous plans will not be valid solu-
tions, thus forcing the planner to find an alternate solution.
The best k plans are found by iteratively solving and refor-
mulating planning tasks. We are interested in this approach
because it is straightforward to extend, including additional
conditions the found plans must meet. When a solution is
found, it can then be checked to verify if it meets a certain
condition. If it does, this solution is counted as a valid plan,
and the iterative procedure continues as normal. If it does
not meet the condition, this solution is forbidden with the
reformulation as usual, but the number of found plans so far
is not increased.

Plan Justification
The notion of plan justification can be traced back to the
early 1990s (Fink and Yang 1992). In that work, Fink and

18

Yang define different types of plan justifications: backward
justification, well justification and perfect justification.

Given Π = (F ,A, I,G), a plan π = (a1, ..., an) and the
set of causal links between them, an action ai ∈ π is back-
ward justified if ∃p ∈ add(ai) such that p ∈ G or ⟨ai, aj , p⟩
is a causal link and aj is backward justified1. The triple
⟨ai, aj , p⟩ forms a causal link if ai adds p, p is a precon-
dition of aj , and p is neither added nor deleted by any action
between ai and aj (Celorrio et al. 2013). Then, ai is back-
ward justified if it is causally related to the goals. A plan π
is backward justified if all of its actions are backward justi-
fied. Well justified actions are those that can not be removed
from the plan without affecting the applicability of other ac-
tions. Perfectly-justified plans are those for which no subset
of actions can be removed from the plan without invalidating
plan. In this paper we also apply this idea.

AP compilations for Action Elimination
This section introduces some formal definitions used in the
rest of the paper, and explains the proposed AP compilations
to eliminate unnecessary actions from plans.

Formal Definitions
We use the notion of perfectly-justified introduced by Fink
and Yang. Thus, a plan is perfectly-justified if no actions
can be skipped or eliminated while maintaining the plans’
validity. We introduce it using the following definitions.

Definition 2 (Reduced Plan). Given a plan π =
⟨a1, . . . , an⟩ for Π and a strict subset of its actions Aπ ⊂ π,
Aπ ̸= ∅, the reduced plan π\Aπ

is the action sequence re-
sulting from eliminating the actions ai ∈ Aπ from π.

Definition 3 (Well-justified action set). A subset of plan
actions Aπ ⊆ π, Aπ ̸= ∅, is well justified if the correspond-
ing reduced plan π\Aπ

is not a valid plan for Π.

The previous definition just extends the notion of well-
justified actions to well-justified subsets of actions. 2

Now, we consider a plan π to be perfectly-justified if all
of its subsets of actions are well justified, i.e. all the plans
reduced by those subsets are invalid, so that there is no way
of reducing the plan while maintaining its validity.

Definition 4 (Perfectly-justified plan). A plan π is
perfectly-justified iff all non-empty strict subsets of its ac-
tions, Aπ ⊂ π, are well-justified.

Then, if there is at least a subset of actions which is not
well-justified, the plan is not perfectly-justified. In that case
will say the actions in that subset are unnecessary.

Given Π and a plan π, the task of finding the small-
est perfectly-justified plan by eliminating actions from π
is called Minimal Length Reduction (MLR) (Balyo, Chrpa,
and Kilani 2014). Balyo, Chrpa, and Kilani also define the
Minimal Reduction (MR) task. The aim of this task is to find
a plan with the smallest possible cost by eliminating actions

1Causal links were called initially establishments (Fink and
Yang 1992).

2This notion is also defined by Balyo, Chrpa, and Kilani [2014]
as plan reductions.

from π. In this paper we are particularly interested in MLR.
Both tasks have been shown to be NP-complete (Fink and
Yang 1992; Nakhost and Müller 2010). In the following sec-
tion we propose a compilation of the MLR problem into an
AP one so that it can be solved with an off-the-shelf planner.

Perfect Justification as Planning
The idea is to define a classical planning task that, given
a planning task and a solution plan, can identify and elimi-
nate sets of unnecessary actions from plans. The compilation
consists of encoding the planning task in a way that allows
to include any action occurring in the original plan after the
last action that was previously included. We achieve this by
creating an order relation between the actions in π. More
formally, given the planning task Π and a solution plan π we
define Πorder = (F ′,A′, I ′,G) as follows:

• F ′ = F ∪ Flast ∪ Forder ∪ Fplanact, where:

– Flast = {lasti | 0 ≤ i ≤ n} facts represent the last
position considered. There is a position (order in the
sequence) for every action in the original plan plus an
additional zero position,

– Forder = {orderi,j | 0 ≤ i ≤ n, i < j ≤ n} are static
facts to encode that position i is before position j, and

– Fplanact = {planact ai | 1 ≤ i ≤ n} are static facts
to represent the action a appears in the plan π at posi-
tion i.

• A′ = {ai,j | a ∈ A, 0 ≤ i ≤ n, i < j ≤ n}, where there
is an ai,j action for every action a in the original task and
combination of positions i, j, defined as follows:

pre(aij) = pre(a) ∪
{lasti, orderi,j , planact aj}

add(aij) = add(a) ∪ {lastj}
del(aij) = del(a) ∪ {lasti}

• I ′ = I ∪ {last0} ∪ {orderi,j | 0 ≤ i, j < n, i < j} ∪
{planact ai | ai ∈ π}.

Actions ai,j in A′ will only be applicable if there is an
occurrence of action a ∈ A in the original plan π at posi-
tion j. For that, facts of type planact ai are included in I ′,
representing the plan π. There is one of such facts per plan
action, indicating π contains an occurrence action a ∈ A at
position i. The lasti fact represent the position of the last in-
cluded action. Thus, the preconditions of ai,j actions check
that the action being included at position j, occurs in the
original plan before the last included action with position i.
The new initial state I ′ sets the relation order between the
actions in π, where there is a fact order0,j for every position
j in the plan, which allows the application of any action of
the plan.

When Πorder is solved, the resulting plan will only con-
tain the actions in the original plan that are necessary with-
out altering the order. The plan that solves Πorder can be
easily compiled-back to be a plan of the original task, just
by removing the action parameters representing orders. The
correspondence between the actions of both plans is one-to-
one.

19

Definition 5. Let π′ be a valid plan of Πorder. Then, the
compiled-back plan for Π is π′′ = {a | a ∈ π ∧ aij ∈ π′}.

This means that every aij action is replaced by its original
action a.

Proposition 1. The plan π′′ obtained from any valid plan π′

for Πorder is a valid plan for Π.

Proof sketch. A plan π that induces the state sequence Sπ =
⟨s0, . . . , sn⟩ is valid if all of its actions are applicable in the
state they are applied and G ⊆ sn. Since the goals of both Π
and Πorder are the same, if π′ is valid for Πorder, then it will
also achieve all the goals in Π by definition. Since pre(a) ⊂
pre(ai,j) for every ai,j ∈ A′, if ai,j is applicable in a state,
then the corresponding action a ∈ A is also applicable in
that state. We know that π′ is valid, so, starting from I all of
its actions are applicable. Since I ⊂ I ′, all actions in π′′ are
in turn applicable starting from I. The goals are met and all
actions are applicable, so π′′ is a valid plan for Π.

Theoretical Properties
This section shows the type of plans that are obtained from
solving the compiled planning tasks. In particular, we show
that the set of valid plans for the compilations is the set of
valid reduced plans of the original task.

Let PΠ be the set of valid plans for a planning task Π.
Two planning tasks Π, Π′ are equivalent if they have the
same sets of valid plans, PΠ = PΠ′ . For two plans π−, π we
say that π− is a subset of π, π− ⊂ π if π− can be generated
from eliminating actions from π. Since the compilation only
allows for the execution of actions in the original plan or for
their (implicit or explicit) elimination, the set of valid plans
for Πorder contain exactly all the valid plans that can be gen-
erated from eliminating subsets of actions from the original
task if their corresponding transformations as defined in 5
are considered. More formally:

Proposition 2. Let Π be a planning task and π =
⟨a1, ..., an⟩ a valid plan for Π. Let Porder be the set of
compiled-back valid plans for Πorder. Then Porder =
{π− ⊆ π |π− ∈ PΠ}.
Proof sketch. We have to show that (i) any plan in Porder is
in {π− ⊆ π |π− ∈ PΠ}, and that (ii) any plan in {π− ⊆
π |π− ∈ PΠ} is in Porder:
(i) Let π′ = ⟨b1, ..., bm⟩ ∈ Porder be any compiled-back
valid plan for Πorder. Since all aij belonging to Πorder have
in their precondition planact aj , only actions in π can be in
π′. It is trivial to show that only one lasti proposition is true
in each state. In I only last0 is true. Because of Πorder en-
coding, any ai for which pre(ai) ⊆ I is applicable initially.
Any of these actions delete last0 and add lasti. An action aj
is now applicable only if i < j. Continuing this process until
lastn is true it is easy to see that π′ can only have actions
in π respecting their order, where some of them might be
skipped. By Proposition 1, π′ ∈ PΠ. Therefore, it is proven
that (∀π′, π′ ∈ Porder =⇒ π′ ⊆ π ∧ π′ ∈ PΠ).
(ii) Let π = ⟨b1, ..., bm⟩ ∈ {π− ⊂ π |π− ∈ PΠ}. Follow-
ing similar reasoning we can prove that (∀π, π ∈ {π− ⊆
π |π− ∈ PΠ} =⇒ π ∈ Porder). This is omitted for space
reasons. Therefore Porder = {π− ⊆ π |π− ∈ PΠ}.

The branching factor for solving Πorder can be as high

as |π| = n, and (
n−1∑
i=1

i) order propositions must be cre-

ated. This might become an issue when the length of plans is
particularly long. We have another compilation introducing
additional skip actions that allow to omit single actions, in
which the order relation is defined only for consecutive ac-
tions. In this way the branching factor is reduced to exactly
2 in each step: either the current action or the skip action can
be applied. In this paper we only consider Πorder. But, we
have observed that the impact of using skip actions instead
is not significant in our specific experiments.

Top-k Relevant Plans
This section introduces the top-k relevant planning problem.
The idea is simple: given a characteristic/condition we are
interested on, finding the best k plans that meet that condi-
tion. We denote the set of all plans that solve a planning task
and meet a condition ω as PΠ

ω ⊆ PΠ. More formally:

Definition 6 (Top-k relevant planning problem). A top-
k relevant planning problem is a tuple ⟨Π, k, ω⟩, where
Π = (F ,A, I,G) is a planning task, k ∈ N and ω : PΠ 7→
{true, false}. The goal is to find a set of plans Pk ⊆ PΠ

ω

such that:

• For each π ∈ Pk, if there exists a plan π′ such that
c(π′) < c(π) ∧ ω(π′) then π′ ∈ Pk.

• |Pk| ≤ |PΠ
ω|, where |Pk| < k implies Pk = PΠ

ω .

This means that we want to find the k plans of least cost
that meet a condition ω. In this work we are particularly in-
terested in plans that are perfectly justified. To do so, we ex-
tend Katz et al. (2018) iterative top-k planning approach as
the Algorithm 1 shows. Initially Pk (solution set) is empty.
Then, as long as k relevant plans have not been found, we
repeat the following procedure. Get the next plan using an
iterative top-k planning approach. If the problem is unsolv-
able, we return the found plans so far. Otherwise, we check
if the plan π meets the condition ω. If it does, it is added to
Pk. Finally, a new planning task is defined following the iter-
ative top-k planning procedure to forbid plans. We leave out
the details of the reformulation of the planning task since
we are using exactly the same approach proposed by Katz
et al. (2018).

An open identified issue with this approach is determin-
ing when to stop. In many instances, the number of plans that
meet a condition might be lower than the number of desired
plans k. When the plans must be perfectly justified, an ex-
ample of this is easy to imagine. For the planning problem
shown on the right of Figure 1 there is only one perfectly
justified plan. Any other plan, including plans with loops,
contains sets of actions that can be eliminated from the plan
to get equally valid plans. Since there is an infinite number
of plans (with loops) that solve the problem, the described
approach would continue trying to find plans to reach k in-
definitely. After finding the first relevant plan, a new (loopy
or with unnecessary actions) plan will be found on each it-
eration. It will not be perfectly justified, and therefore it will
not be added to the solution set. Then, if k > 1, the process

20

will continue indefinitely, unless it is explicitly stopped us-
ing time or memory limits or memory is exhausted. A possi-
ble solution would be to incorporate the relevance check into
the search process. Specifically, it can be performed when
checking the goal condition so that the search can continue
when the plan is not relevant. However, it is not trivial to
do this without losing completeness (i.e. guarantee that all
existing relevant plans can be found), because the fact that
a plan is relevant not only depends on the state but also on
the path. Then, determining whether or not there are more
relevant plans remains a subject of future work. In this work
we consider a time bound. But, if the top-k planning system
could provide guarantees on loop-less paths completeness
would be ensured.

Algorithm 1: IterativeRelevantTopK(⟨Π, k, ω⟩)
Pk ← ∅, π ← ∅
while |Pk| < k ∧ ¬timeout do
π ← get next plan(Π)
if π = ∅ then

return Pk

end if
if ω(π) then

Pk ← Pk ∪ {π}
end if
Π← forbid(Π, π)

end while
return Pk

Evaluation
Evaluation Setting
For this particular work, we wish to analyse the number
of perfectly justified plans found when solving the top-
k and top-k relevant planning problems. We perform this
analysis over 300 planning tasks from 15 different do-
mains that are widely used in plan and goal recognition re-
search (Ramı́rez and Geffner 2009; Sohrabi, Riabov, and
Udrea 2016; Pereira, Oren, and Meneguzzi 2020). We se-
lected this benchmark3 and not the standard International
Planning Competition (IPC) benchmark for two main rea-
sons. Firstly, IPC tasks are usually difficult to solve opti-
mally, and thus computing large sets of plans using an itera-
tive approach might be too time consuming. Secondly, these
are domains and problems were used also in other settings
as diverse planning (Roberts, Howe, and Ray 2014).

We modify Katz et al. (2018) software to find relevant
plans in an iterative manner, following Algorithm 1. Since
we are interested in perfectly justified plans, the condition to
meet, ω, will be perfect justification for all the experiments
reported. We use our implementation of the Πorder compi-
lation to check if found plans are perfectly justified. To do
this, we set it to solve the MLR (Minimal Length Reduction)
problem. This implementation takes as input a planning task

3The set of planning tasks we used will be made publicly avail-
able.

Figure 2: Violin plot of the distribution of the number of
plans and relevant plans found in the kitchen domain.

(in PDDL) and a plan, and generates the Πorder task (also
in PDDL). If the number of actions in the solution of this
task is the same as in the original plan, then the plan did not
have unnecessary actions. We use the Fast-Downward (FD)
planning system (Helmert 2006) to solve the Πorder tasks,
configured to find an optimal solution using A* as a search
algorithm and the hmax heuristic (Bonet and Geffner 2001).

The experiments were run on Intel(R) Xeon(R) CPU
X3470 @ 2.93GHz machines. We used a time limit of 15
minutes and a memory limit of 14GB to solve each top-k
and top-k relevant problem. For each instance of each do-
main, we solve both the top-k and top-k relevant planning
problems for k ∈ [1, 5, 10, 50, 100, 500, 1000]. We did not
conduct experiments with larger values of k since most tasks
run out of memory or time.

Results
Table 1 shows a summary of the results for the top-k rele-
vant planning problem. For each domain and value of k we
report two values: the mean number and standard deviation
of plans found before reaching k or the time limit (column
Plans), and the average number and standard deviation of
those plans that where relevant (column R-Plans). Remem-
ber that in this particular setting we consider a plan to be
relevant if it is perfectly justified.

When the number of R-Plans is smaller than k, this indi-
cates that on average we were not able to find the desired
amount of relevant plans. This happens often in some do-
mains as blocks-world, campus, depots, grid and sokoban.
In general, the ratio of Plans to R-Plans decreases as k in-
creases. Currently we can not know if there are enough ad-
ditional relevant plans to reach k. As explained previously,
this is a subject of further research. But we can make some
analysis considering specific domain characteristics. For in-
stance, in blocks-world, many actions involving blocks that
are not in the goals are not relevant and in general there are
few relevant plans. This is reflected on the number of Plans
vs. R-Plans for blocks-world.

21

k = 5 k = 10 k = 50 k = 100 k = 500 k = 1000
Domain Plans Rel-Plans Plans Rel-Plans Plans Rel-Plans Plans Rel-Plans Plans Rel-Plans Plans Rel-Plans
blocks 44.1± 65.09 4.95± 0.22 158.9± 125.41 8.55± 2.14 255.45± 82.27 22.2± 14.97 261.55± 69.82 22.9± 16.57 261.55± 69.82 22.9± 16.57 261.55± 69.82 22.9± 16.57
campus 8.2± 6.57 5.0± 0.0 13.2± 6.57 10.0± 0.0 120.5± 56.7 50.0± 0.0 261.15± 88.26 97.35± 8.16 445.9± 52.34 220.85± 72.27 445.9± 52.34 220.85± 72.27
depots 9.05± 18.11 5.0± 0.0 25.3± 52.57 9.9± 0.45 83.05± 71.18 44.5± 13.52 125.55± 53.73 87.0± 31.79 457.0± 94.55 417.25± 179.42 839.35± 296.94 797.25± 379.85

driverlog 5.0± 0.0 5.0± 0.0 10.9± 2.47 10.0± 0.0 100.65± 100.78 45.95± 9.78 149.95± 87.45 85.15± 29.1 434.2± 109.3 343.05± 201.86 696.25± 332.56 600.1± 434.46
dwr 5.0± 0.0 5.0± 0.0 10.0± 0.0 10.0± 0.0 67.6± 54.17 46.8± 9.85 112.6± 38.78 91.8± 25.24 440.35± 99.52 370.4± 182.27 721.05± 320.51 651.1± 409.12
ferry 5.0± 0.0 5.0± 0.0 10.0± 0.0 10.0± 0.0 55.0± 11.23 50.0± 0.0 117.8± 29.94 99.0± 3.64 420.6± 155.36 341.6± 165.52 565.8± 310.21 471.8± 342.68
grid 47.9± 63.38 4.55± 0.83 69.45± 64.73 7.7± 2.94 104.15± 53.6 14.45± 13.78 107.3± 51.12 15.95± 18.22 107.3± 51.12 15.95± 18.22 107.3± 51.12 15.95± 18.22

intruder 5.0± 0.0 5.0± 0.0 10.0± 0.0 10.0± 0.0 50.0± 0.0 50.0± 0.0 100.0± 0.0 100.0± 0.0 500.0± 0.0 500.0± 0.0 1000.0± 0.0 1000.0± 0.0
kitchen 5.0± 0.0 5.0± 0.0 10.0± 0.0 10.0± 0.0 406.15± 269.05 38.8± 8.79 423.65± 244.68 56.3± 32.99 563.65± 52.84 196.3± 228.66 738.65± 198.02 371.3± 473.33
logistics 5.0± 0.0 5.0± 0.0 10.0± 0.0 10.0± 0.0 50.0± 0.0 50.0± 0.0 100.0± 0.0 100.0± 0.0 500.0± 0.0 500.0± 0.0 1000.0± 0.0 1000.0± 0.0
miconic 5.0± 0.0 5.0± 0.0 10.0± 0.0 10.0± 0.0 50.0± 0.0 50.0± 0.0 100.0± 0.0 100.0± 0.0 395.1± 139.83 383.2± 124.99 558.5± 370.72 518.8± 308.3

rover 5.0± 0.0 5.0± 0.0 10.0± 0.0 10.0± 0.0 50.0± 0.0 50.0± 0.0 112.25± 54.78 99.7± 1.34 499.05± 47.3 475.2± 91.95 914.15± 174.57 859.6± 266.66
satellite 5.4± 0.82 5.0± 0.0 11.2± 4.02 10.0± 0.0 63.5± 35.14 50.0± 0.0 127.0± 59.89 99.3± 3.13 524.05± 169.89 327.95± 115.18 558.85± 202.5 361.55± 197.39
sokoban 17.8± 20.11 5.0± 0.0 47.95± 43.0 9.45± 1.23 92.55± 45.05 23.4± 15.3 95.45± 42.66 26.3± 21.15 95.45± 42.66 26.3± 21.15 95.45± 42.66 26.3± 21.15

zenotravel 5.0± 0.0 5.0± 0.0 10.0± 0.0 10.0± 0.0 50.0± 0.0 50.0± 0.0 109.3± 28.77 99.0± 4.47 444.85± 130.84 396.55± 132.22 716.85± 477.12 602.75± 342.55

Table 1: Results for top-k relevant plans. ω is perfect justification. Plans column shows the mean number of plans found. R-Plans
shows the mean number of relevant plans found.

k = 5 k = 10 k = 50 k = 100 k = 500 k = 1000
Domain TOP-K TOP-K-R TOP-K TOP-K-R TOP-K TOP-K-R TOP-K TOP-K-R TOP-K TOP-K-R TOP-K TOP-K-R
blocks 0.61± 0.21 61.79± 197.31 1.28± 0.45 403.32± 407.96 13.01± 6.0 848.78± 194.22 71.33± 47.74 892.13± 2.83 892.67± 4.58 892.13± 2.83 892.67± 4.58 892.13± 2.83
campus 0.6± 0.1 3.42± 3.01 1.06± 0.17 5.32± 2.82 7.03± 3.05 73.14± 47.69 23.96± 7.16 305.19± 248.23 856.96± 77.69 885.98± 2.37 893.99± 1.86 885.98± 2.37
depots 4.46± 4.77 11.42± 24.09 4.54± 4.7 57.11± 197.6 7.04± 6.08 156.38± 318.39 19.93± 29.91 167.9± 313.52 183.9± 363.04 290.95± 307.78 227.08± 393.18 429.71± 274.82

driverlog 0.32± 0.22 1.46± 0.28 0.43± 0.29 3.14± 1.58 3.96± 7.23 188.14± 356.62 17.23± 35.84 239.66± 381.36 352.7± 431.0 453.29± 398.78 446.25± 457.37 543.48± 348.29
dwr 1.65± 1.74 4.46± 3.56 1.66± 1.74 6.83± 5.06 2.7± 3.2 113.46± 265.99 10.0± 25.22 135.88± 259.73 358.41± 447.01 547.2± 304.83 358.45± 446.98 718.61± 237.36
ferry 0.25± 0.04 1.6± 0.18 0.26± 0.04 2.72± 0.31 4.11± 9.19 26.6± 45.9 39.61± 79.46 165.11± 296.76 499.92± 399.58 609.16± 344.1 691.51± 355.47 738.12± 247.45
grid 2.17± 2.98 277.25± 412.79 7.07± 11.28 459.18± 438.24 203.9± 247.39 815.92± 200.78 609.08± 324.62 880.73± 23.99 883.33± 11.98 880.73± 23.99 883.33± 11.98 880.73± 23.99

intruder 0.2± 0.02 1.47± 0.06 0.19± 0.02 2.52± 0.11 0.2± 0.02 10.92± 0.48 0.21± 0.02 21.44± 0.96 0.25± 0.01 105.21± 4.82 0.28± 0.01 209.76± 9.63
kitchen 0.22± 0.04 1.44± 0.25 0.31± 0.12 2.78± 0.36 1.47± 1.02 579.35± 426.1 5.01± 3.58 583.86± 419.8 291.94± 228.38 619.15± 370.45 579.58± 436.1 663.62± 308.28
logistics 0.22± 0.02 1.55± 0.04 0.21± 0.02 2.63± 0.06 0.22± 0.02 11.36± 0.24 0.23± 0.02 22.3± 0.47 0.29± 0.03 109.28± 2.28 0.33± 0.03 218.01± 4.63
miconic 0.27± 0.06 1.47± 0.1 0.42± 0.23 2.85± 0.49 4.32± 4.62 16.91± 6.6 23.14± 28.47 48.37± 32.12 579.04± 391.23 642.95± 330.82 700.86± 334.11 771.58± 228.86

rover 0.42± 0.48 1.74± 0.53 0.42± 0.48 2.86± 0.57 0.43± 0.48 11.76± 1.05 0.58± 0.81 66.12± 192.94 48.66± 199.57 190.02± 236.65 223.99± 397.08 391.2± 288.52
satellite 0.28± 0.14 1.47± 0.31 0.38± 0.21 2.83± 1.49 3.18± 2.55 22.86± 30.06 12.89± 16.98 84.58± 188.72 571.24± 328.02 817.98± 204.97 846.09± 198.99 848.75± 153.6
sokoban 6.99± 10.57 55.75± 115.06 19.87± 29.48 297.85± 374.79 310.81± 312.7 811.89± 177.28 635.6± 297.76 883.9± 10.72 882.85± 13.61 883.9± 10.72 882.85± 13.61 883.9± 10.72

zenotravel 0.61± 0.58 1.76± 0.67 0.73± 0.78 2.86± 1.02 4.2± 6.19 15.09± 7.91 15.18± 24.28 80.94± 192.4 379.63± 384.06 505.01± 378.75 614.63± 412.74 687.66± 308.04

Table 2: Time results for the top-k and top-k relevant problems.

k = 5 k = 10 k = 50 k = 100 k = 500 k = 1000
Domain K K-R K K-R K K-R K K-R K K-R K K-R
blocks 0 1 0 7 0 19 0 20 20 20 20 20
campus 0 0 0 0 0 0 0 2 13 20 20 20
depots 0 0 0 1 0 3 0 3 4 4 5 5

driverlog 0 0 0 0 0 4 0 5 7 9 10 10
dwr 0 0 0 0 0 2 0 2 8 8 8 12
ferry 0 0 0 0 0 0 0 2 9 12 15 16
grid 0 6 0 10 2 18 10 20 20 20 20 20

intruder 0 0 0 0 0 0 0 0 0 0 0 0
kitchen 0 0 0 0 0 13 0 13 0 13 13 13
logistics 0 0 0 0 0 0 0 0 0 0 0 0
miconic 0 0 0 0 0 0 0 0 11 12 15 16

rover 0 0 0 0 0 0 0 1 1 2 5 5
satellite 0 0 0 0 0 0 0 1 9 18 19 19
sokoban 0 0 0 5 3 17 10 20 20 20 20 20

zenotravel 0 0 0 0 0 0 0 1 6 9 13 14

Table 3: Number of timeouts recorded for the top-k and top-
k relevant planning problems

There are several domains for which a really large amount
of plans must be found to find a small amount of rele-
vant plans, and in most cases the desired number k is never
achieved. In contrast, there are domains like logistics where
all found plans are relevant. This occurs because a single
plan for logistics can be used to derive additional plans by
reducing it to a partial order plan. Each plan derived from
the first (optimal) plan is perfectly justified because this is
an unit-cost domain. Even more, in all our instances the all
the desired (k) plans are derived from the first plan found.
Figure 2 shows the distribution of the number of plans and
relevant plans in the kitchen domain. This is one of the do-
mains where the number of non-relevant plans is especially
high. The width of the shadows shows that more data points
share that value. The upper and lower horizontal lines rep-
resent the maximum an minimum values of the results re-

spectively. The vertical lines correspond to the medians. The
median of the first is 50 while for the second is 10. It is
straightforward to verify that the presence of relevant plans
considerably decreases as larger k values are required. As
expected, irrelevant information in plans grows as more iter-
ations are carried out.

Table 2 shows the required time (in seconds) to solve the
top-k (TOP-K) and top-k relevant (TOP-K-R) problems for
different values of k. As expected, the time spent on verify-
ing that the found plans are relevant is high, given that guar-
anteeing a plan does not contain redundant actions is NP-
complete (Fink and Yang 1992; Nakhost and Müller 2010).
There are domains, as blocks-world, grid and kitchen, where
most of the found plans are not relevant, and therefore this
time can be better justified than for other domains, like lo-
gistic, where all found plans are relevant. This can motivate
further investigation on how to determine if the extra time
needed to solve the top-k relevant problem is worth it de-
pending on domain/problem characteristics.

Table 3 shows the number of timeouts for each domain
and for top-k (K) and top-k relevant (K-R). As expected, the
number of timeouts for the relevant variant greatly exceeds
the one for the regular top-k. Note that with the current ap-
proach if there are not k relevant plans our approach always
stops due to the time limit.

Related Work
There exists several approaches to top-k planning (Ri-
abov, Sohrabi, and Udrea 2014; Katz et al. 2018; Speck,
Mattmüller, and Nebel 2020), but so far all of them are con-
cerned with the problem of finding the best k plans for a
planning task, and not much has been studied the semantics
and utility of these plans. Closer works to the idea intro-

22

duced in this paper are those about diverse planning (Srivas-
tava et al. 2007; Roberts, Howe, and Ray 2014; Katz and
Sohrabi 2020), where resulting plans are required to be dif-
ferent and similarity metrics are defined between plans. We
consider the notion of plan relevance that applies only to sin-
gle plans and can be considered as complementary to plan
diversity. In applications of top-k planning one might want
to generate plans that are at the same time diverse and rele-
vant.

In this work, the condition for plan relevance is based on
perfectly justified plans. Specifically we filter those plans
that are not perfectly justified in a post-optimization step.
There are some other works on plan post-optimization.
Fink and Yang [1992] formalized different notions of plan
justifications and provided complexity results for them.
Specifically, they defined greedily justified actions as those
that make the plan invalid when they are removed from
it, and perfectly-justified plans as those with no redun-
dant actions. Nakhost and Müller [2010] proposed Action
Elimination, an algorithm based on greedy justification,
and an additional technique based on plan neighborhood
graph search. There are methods based on identifying re-
dundant actions and non-optimal sub-plans by analyzing
action dependencies, independencies (Chrpa, McCluskey,
and Osborne 2012b), by checking pairs of inverse actions
(Chrpa, McCluskey, and Osborne 2012a), and SAT-based
approaches (Balyo, Chrpa, and Kilani 2014; Muise, Beck,
and McIlraith 2016). The work in this paper is closely re-
lated to all these works with the difference that we ap-
proach the problem using Automated Planning. However,
our method could be replaced by any other.4

There are also techniques that remove irrelevant infor-
mation at preprocessing. For instance, Nebel, Dimopoulos,
and Koehler 1997 proposed heuristics for selecting rele-
vant information based on minimizing the number of initial
facts by computing a fact generation tree going backwards
from the goals; and a recent approach (Silver et al. 2020)
learns convolutional graph neural networks to predict sub-
sets of objects that are sufficient for solving the planning
task. Approaching the problem at preprocessing has the ad-
ditional advantage that it can make easier the planning pro-
cess. This is specially interesting when the number of ob-
jects is very large. In this case, most modern heuristic plan-
ners that ground the actions over objects during preprocess-
ing scale poorly. This is also one of the motivations for re-
cent research on lifted planning (Corrêa et al. 2020), abstrac-
tions that simplify the problem (Fuentetaja and de la Rosa
2016) and some approaches based on generalized planning,
as the aforementioned work of Silver et al.. We believe that
studying techniques that can be applied in preprocessing or
even during search in the context of top-k relevant planning
would be an interesting research direction.

4We have some results comparing it to the Max-SAT approach
of Balyo, Chrpa, and Kilani (2014), showing both very similar
performance times.

Conclusions and Future Work
In this work we proposed the idea of top-k relevant plans as
plans that meet some extra condition in the context of top-k
planning. Specifically, we consider plans that are perfectly
justified (i.e. they do not contain subsets of actions that can
be removed while maintaining plan validity). We have in-
corporated this notion into a top-k planner as a filtering step
which is applied every time a new plan is found. The filtering
process is posed as an Automated Planning task. In partic-
ular, given a plan we show how to create planning tasks to
solve Minimal Length Reduction (MLR) problem. We have
performed experiments in a variety of domains. Many prob-
lems have few relevant plans or the number of plans found
in order to find the desired relevant plans is high.

Regarding the proposed approach, determining whether
there exist additional relevant plans to those already found is
an interesting line of future work. We also plan to consider
our work in conjunction to additional techniques that can
be applied to filter irrelevant information in a preprocessing
step or during search. Additionally, we wish to consider dif-
ferent definitions of relevance. Finally, we want to study the
impact of plan relevance in applications of top-k planning as
goal recognition.

Acknowledgments
This work has been partially funded by FEDER/Ministerio
de Ciencia, Innovación y Universidades - Agencia Estatal
de Investigación/TIN2017-88476-C2-2-R, RTC-2016-5407-
4, and the Madrid Government (Comunidad de Madrid-
Spain) under the Multiannual Agreement with UC3M in the
line of Excellence of University Professors (EPUC3M17),
and in the context of the V PRICIT (Regional Programme
of Research and Technological Innovation).”

References
Balyo, T.; Chrpa, L.; and Kilani, A. 2014. On different
strategies for eliminating redundant actions from plans. In
Seventh Annual Symposium on Combinatorial Search.
Boddy, M. S.; Gohde, J.; Haigh, T.; and Harp, S. A. 2005.
Course of Action Generation for Cyber Security Using Clas-
sical Planning. In ICAPS 2005, 12–21.
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence, 129(1): 5–33.
Borrajo, D.; Gopalakrishnan, S.; and Potluru, V. K. 2020.
Goal Recognition via Model-based and Model-free Tech-
niques. In ICAPS Workshop on Planning for Financial Ser-
vices (FinPlan).
Borrajo, D.; and Veloso, M. 2020. Domain-independent
Generation and Classification of Behavior Traces. In ICAPS
Workshop on Planning for Financial Services (FinPlan).
Borrajo, D.; Veloso, M.; and Shah, S. 2020. Simulating and
Classifying Behavior in Adversarial Environments Based on
Action-State Traces: An Application to Money Laundering.
In Proceedings of the 2020 ACM International Conference
on AI in Finance. New York (EEUU).
Celorrio, S. J.; Haslum, P.; Thiebaux, S.; et al. 2013. Pruning
bad quality causal links in sequential satisfying planning.

23

Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012a. Deter-
mining redundant actions in sequential plans. In 2012 IEEE
24th International Conference on Tools with Artificial Intel-
ligence, volume 1, 484–491. IEEE.
Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012b. Op-
timizing plans through analysis of action dependencies and
independencies. In Twenty-Second International Conference
on Automated Planning and Scheduling.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Frances,
G. 2020. Lifted successor generation using query optimiza-
tion techniques. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 30,
80–89.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial intelligence, 2(3-4): 189–208.
Fink, E.; and Yang, Q. 1992. Formalizing plan justifications.
Fuentetaja, R.; and de la Rosa, T. 2016. Compiling irrelevant
objects to counters. special case of creation planning. AI
Communications, 29(3): 435–467.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Katz, M.; and Sohrabi, S. 2020. Reshaping diverse plan-
ning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, 9892–9899.
Katz, M.; Sohrabi, S.; and Udrea, O. 2020. Top-Quality
Planning: Finding Practically Useful Sets of Best Plans. In
AAAI 2020, 9900–9907.
Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018.
A Novel Iterative Approach to Top-k Planning. In ICAPS
2018, 132–140.
Muise, C.; Beck, J. C.; and McIlraith, S. A. 2016. Optimal
partial-order plan relaxation via MaxSAT. Journal of Artifi-
cial Intelligence Research, 57: 113–149.
Mund, S.; Vallati, M.; and McCluskey, T. L. 2020. An Ex-
ploration of the Use of AI Planning for Predicting Stock
Market Movement. In ICAPS 2020 Workshop on AI Plan-
ning for Financial Services (FinPlan).
Nakhost, H.; and Müller, M. 2010. Action Elimination and
Plan Neighborhood Graph Search: Two Algorithms for Plan
Improvement. In Brafman, R. I.; Geffner, H.; Hoffmann,
J.; and Kautz, H. A., eds., Proceedings of the 20th Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS 2010, Toronto, Ontario, Canada, May 12-16, 2010,
121–128. AAAI.
Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignoring
irrelevant facts and operators in plan generation. In Euro-
pean Conference on Planning, 338–350. Springer.
Pereira, R. F.; Oren, N.; and Meneguzzi, F. 2020. Landmark-
based approaches for goal recognition as planning. Artificial
Intelligence, 279: 103217.
Pozanco, A.; Polychroniadou, A.; Magazzeni, D.; and Bor-
rajo, D. 2021. Proving Security of Cryptographic Protocols
using Automated Planning. In ICAPS Workshop on Plan-
ning for Financial Services (FinPlan).

Ramı́rez, M.; and Geffner, H. 2009. Plan recognition as
planning. In Twenty-First International Joint Conference on
Artificial Intelligence.
Ramı́rez, M.; and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. In Twenty-
Fourth AAAI Conference on Artificial Intelligence.
Riabov, A.; Sohrabi, S.; and Udrea, O. 2014. New algo-
rithms for the top-k planning problem. In Proceedings of
the scheduling and planning applications workshop (spark)
at the 24th international conference on automated planning
and scheduling (icaps), 10–16.
Roberts, M.; Howe, A. E.; and Ray, I. 2014. Evaluating di-
versity in classical planning. In Twenty-Fourth International
Conference on Automated Planning and Scheduling.
Silver, T.; Chitnis, R.; Curtis, A.; Tenenbaum, J.; Lozano-
Perez, T.; and Kaelbling, L. P. 2020. Planning with learned
object importance in large problem instances using graph
neural networks. arXiv preprint arXiv:2009.05613.
Sohrabi, S.; Riabov, A.; and Udrea, O. 2016. Plan Recogni-
tion as Planning Revisited. In Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence (IJCAI).
Speck, D.; Mattmüller, R.; and Nebel, B. 2020. Symbolic
Top-k Planning. In AAAI 2020, 9967–9974.
Srivastava, B.; Nguyen, T. A.; Gerevini, A.; Kambhampati,
S.; Do, M. B.; and Serina, I. 2007. Domain Independent Ap-
proaches for Finding Diverse Plans. In IJCAI, 2016–2022.

24

