
Using the Fast Downward System in CPCES

Xiaodi Zhang1, Alban Grastien1

1Research School of Computing
Australian National University, ACT, Australia, 2601

firstname.lastname@anu.edu.au

Abstract
CPCES is a conformant planning solver that continuously
searches for candidate plans through a classical planner and
for counter-examples to these plans. CPCES can use any clas-
sical planner, but performance with Fast Downward has
been so far mediocre. We argue that this is due in part to a
sub-optimal translation from PDDL to SAS+. We recognise
that the problems that the classical planner is asked to solve
have very specific structure, and that they can be split in in-
dependent problems to be translated separately. We conduct
an empirical study that shows that, when using this translat-
ing strategy, the performance of CPCES powered by Fast
Downward can be brought to the level of CPCES + Fast
Forward.

1. Introduction
Conformant planning refers to a task that generates a plan
given unknown initial states and unknown actions’ effects,
and there is no observation during plan execution. The
plan should be valid for all possible initial states. Confor-
mant planning problem is ExpSpace-complete (Haslum
and Jonsson 1999). In this paper, we concentrate on deter-
ministic conformant planning in which uncertainty is only in
the initial state.
CPCES (Grastien and Scala 2017; 2020) is a confor-

mant planner that uses two components. The first compo-
nent searches for a counter-example to a candidate plan by
falsifying one of the (sub)goals of the plan; The second com-
ponent computes a candidate plan that is valid for the set
of counter-examples generated so far; this subproblem is
solved by transforming it into a classical planning problem
with a multi-interpretation PDDL file, and giving it to a clas-
sical planner. CPCES can therefore be used with FF (Fast
Forward) (Hoffmann and Nebel 2001), MADAGASCAR
(Rintanen 2012), and FD (Fast Downward) (Helmert
2006), but its performance with the later is subpar.
FD is a classical planning system that contains two parts.

A pre-processing step translates the input PDDL file to a
SAS+ file (multi-valued planning task file). The second step
is the planning proper, and it consists of a heuristic search
procedure. FD is a general framework that contains many
different search procedures and heuristics, and gives us ac-
cess to a wealth of planning techniques.

The goal of this work is to study how to use FD in CPCES
properly. Early experiments have shown us that the transla-
tion from PDDL to SAS+ is time consuming and leads to
poor SAS+ representations. We recognise however that the
classical planning problems have a structure that can be ex-
ploited. Indeed, each subproblem at each iteration of CPCES
aims to find a plan that is valid for an increasing set of ini-
tial states. Practically, the planning problems build on top
of a multi-interpretation representation of the environment,
each interpretation corresponding to one initial state. Con-
sequently, each problem contains the list of interpretations
of the previous iteration plus an extra one. Hence, we show
that it is possible to isolate this new interpretation, translate
it into SAS+, and add this translation to the existing trans-
lation. This is not only faster, as the translation becomes a
simple task, but also leads to SAS+ translations that contain
fewer variables.

This paper is structured as follows. We quickly review ex-
isting conformant planners in the next section. We then give
the technical background necessary to understand in this
work, defining the conformant planning problem, CPCES,
and FD. We then show how to exploit the structure of the
classical planning problems in order to accelerate its trans-
lation to SAS+. Finally, we show experimentally that this
approach is practically effective.

2. Related Works
The problem of conformant planning was defined by Smith
and Weld (Smith and Weld 1998) and was recognised as a
path-finding problem over the space of belief states (Bonet
and Geffner 2000). It was shown to be EXPSPACE-complete
(Haslum and Jonsson 1999).

Cimatti, Roveri, and Bertoli (2004) proposed to use Bi-
nary Decision Diagrams to compactly represent the belief
states. To, Son, and Pontelli (2015) used DNF representa-
tions in their solver.
Conformant-FF (Hoffmann and Brafman 2006) ex-

tends the classical planner FF, using implicit belief state
representation and a SAT solver to solve the problem. The
belief state is then represented as a propositional formula
on the state variables; to maintain a compact representa-
tion, this formula is defined over the past state variables.

The SAT solver is used to determine if the relevant condi-
tions are satisfied in all states of the current belief. The SAT
solver is also used to determine the known facts of each be-
lief. Conformant-FF adopts planning graph to generate
its heuristic function. It uses a 2-CNF projection of the for-
mula that captures the true belief state semantics.
POND (Bryce 2006) can solve many problems, such as

deterministic conformant planning, non-deterministic plan-
ning, probabilistic planning. POND uses LUG to represent
a set of explicit planning graph, and searches forward in
the space of belief states represented by BDDs. POND pro-
vides various search algorithms, such as A*, AO*, LAO*.
The search algorithm is decided by problem and user pref-
erences.
T1 (Albore, Ramirez, and Geffner 2011) is a translation-

based planner. It is sound for problems with width 1,1 and
complete for all problems. T1 is built on top of the K1

S trans-
lation that turns a conformant planning problem to a classi-
cal one, performing a verification procedure to establish the
literals that are positively known or negatively known. T1
searches a valid plan by forward search in the belief space.

Our work is based on CPCES from Grastien and Scala
(2020), which we detail in the next section.

3. Background
Conformant Planning
Given a set of facts F , a state s is modeled as the subset
of facts s ⊆ F that hold in the state. We write L(F) the
set of propositional formulas defined over the set of propo-
sitional variables represented by F . A deterministic confor-
mant planning problem P = ⟨F,N,A, I,G⟩ is defined as
follows:
• F is the finite set of facts;
• N is a set of action names, also called actions;

• A : N → L(F) × 2L(F)×2F×2F is a func-
tion that returns a description of each action such
that A(a) = ⟨pre(a), coneff (a)⟩ and coneff (a) =
{⟨c1, eff +

1 , eff
−
1 ⟩, . . . , ⟨ck, eff

+
k , eff

−
k ⟩};

• I ∈ L(F) is the initial condition; and
• G ∈ L(F) is the goal condition.

A state s ⊆ F is initial if it satisfies the initial condition:
s |= I; similarly, a state is a goal state if it satisfies the
goal condition. Applying action a in state s yields the effects
⟨eff +(s, a), eff −(s, a)⟩ defined by

eff +(s, a) =
⋃

⟨c, eff +, eff −⟩ ∈ coneff (a)
s |= c

eff +

and
eff −(s, a) =

⋃
⟨c, eff +, eff −⟩ ∈ coneff (a)

s |= c

eff −.

1The width of a conformant planning problem is a measure of
complexity based on how many initially uncertain state variables
need to be considered jointly.

G

T

W E

N

S

1 2 3 4 5

1

2

3

4

5

Figure 1: Graphical representation of a conformant planning
problem. A robot is standing in this 5×5 grid surrounded by
walls. its initial location is unknown. The goal is to move the
robot to “G”. One valid plan is GO E × 4, GO S × 4, GO N
× 2, GO W × 2.

The state reached by applying action a in state s is s[a] =
s \ eff −(s, a)∪ eff +(s, a). Action a is applicable in state s
if the following two conditions holds:

1. state s satisfies the action’s precondition: s |= pre(a);

2. the effects of the actions do not conflict: eff +(s, a) ∩
eff −(s, a) = ∅.

A plan is a sequence of action: π = a1, . . . , ak. Applying
this plan in state s0 leads to the sequence of states s1, . . . , sk
where si = si−1[ai] for each i. The plan is applicable in
state s0 if each action ai is applicable in si−1. The plan is
valid in state s0 if it is applicable and sk is a goal state. It is
valid in a set of states if it is valid in each state of the set.

A solution to the conformant planning problem is a plan
that is valid in all initial states. We write Π(P) ⊆ N∗ the set
of solutions of P .

A conformant planning problem is a classical planning
problem if there is only one initial state.

Figure 1 presents an example of conformant planning
problem. A robot is standing in a 5 × 5 grid, but its ex-
act location is unknown. The grid is surrounded by walls
to prevent the robot from moving outside. If the robot hits
the wall, it will not move but just stand still. The robot can
execute four actions: GO N, GO E, GO W, GO S, which rep-
resent moves to North, East, West, and South, respectively.
The robot is required to move to (3,3), denoted as “G”. The
sequence of actions GO S × 4, GO E × 4 leads to robots to
location (5, 1) regardless of its initial location (“T” in the fig-
ure). From there, the sequence GO N × 2, GO W × 2 leads
to the destination.

SAS+
The problem definition given above matches the PDDL rep-
resentation in which the basic element is a predicate (fact).

Many planners, in particular those using the FD system, rea-
son instead with a multi-valued encoding such as SAS+.

In a multi-valued encoding, facts are replaced by state
variables. Each state variable v has a domain Dv , and as-
signments (v = ν) where ν ∈ Dv is a value from v’s do-
main are equivalent to facts. An atomic effect (v = ν) then
corresponds to a positive effect (v = ν) and a list of negative
effects (v = ν′) for all other value ν′ ̸= ν.

Translating a PDDL representation to a SAS+ representa-
tion generally requires identifying subsets of pairwise mu-
tually exclusive facts F ′. For each subset, a variable v is
created with domain F ′ ∪ {⊥}: (v = f) holds in all reach-
able SAS+ states where the equivalent PDDL state would
include fact f (and not f ′ for all other facts from F ′ \ {f}).
The symbol ⊥ is used to represent a situation in which all
facts f ∈ F ′ are false in the state.

CPCES
CPCES was proposed by Scala and Grastien to solve confor-
mant planning problems (Grastien and Scala 2017). CPCES
searches the valid plan by continuously searching for can-
didate plans and counter-examples to these candidates (Al-
gorithm 1). CPCES stores the counter-examples into a set
B called the sample. A counter-example is an initial state
for which the candidate plan is not valid. In each iteration,
CPCES first produces a candidate plan that is valid for all
states in the sample (Line 5). In this step, the corresponding
conformant planning problem is reduced to classical plan-
ning as described later. This translation is only practical be-
cause the sample is small; it would not be possible to apply
a similar technique for the set of initial states. Then CPCES
performs a regression operation to generate an initial state in
which the plan is invalid, either because one of the actions is
not applicable in the sequence of states induced by the plan
or because that plan does not lead to the goal (Line 9). By
adding counter-examples to the sample B, CPCES guaran-
tees that the same (invalid) candidate plan will not be pro-
duced again in the future.

Currently, CPCES uses FF to produce a candidate plan
(Line 5). The goal of this work is to make it practical to use
FD instead, as many modern planners are built on top of FD.

Example 1 We illustrate the execution of CPCES on the
problem described in Figure 1. In the first round, sample
set B is empty, and a candidate plan is π0 = ε, i.e., the
empty sequence. Then, using a SAT solver, CPCES gener-
ates the counter-example (1, 5) (from this state, π0 does not
lead to the goal). So (1, 5) is added to the sample set B.
In the second round, another candidate plan is produced:
π1 = GO E × 2, GO S × 2. A new counter-example is gen-
erated, (5, 1), and added to the sample which now evaluates
to {(1, 5), (5, 1)}. In the third round, a new candidate plan
π2 = GO E × 4, GO S × 4, GO W × 2, GO N × 2 is produced
that is valid for both (1, 5) and (5, 1). Now, CPCES cannot
find any more counter-example, so π2 is a solution to this
problem.

Reduction from Conformant Planning to Classical Plan-
ning We now review how the problem of producing a plan

Algorithm 1 The conformant planner CPCES.
1: input: conformant planning problem P
2: output: a conformant plan, or no plan
3: B := ∅
4: loop
5: π := produce-candidate-plan(P,B)
6: if there is no such π then
7: return no plan
8: end if
9: q := generate-counter-example(P, π)

10: if there is no such q then
11: return π
12: end if
13: B := B ∪ {q}
14: end loop

that is valid for a given sample is reduced to classical plan-
ning. Given this reduction, CPCES then calls a classical
planner to find the candidate plan.

Let B = {q1, q2, . . . , qn} be the sample and, for any
given state q, let φ(q) be the proposition formula that is
satisfied only by state q. Finding a plan that is valid for
a sample B is equivalent to finding a solution to the con-
formant planning problem PB = ⟨F,N,A, IB , G⟩ where
IB =

∨
i∈{1,...,n} φ(qi) is the condition satisfied by all the

states in B and only them. The reduction of PB to classical
planning consists of n classical planning problems Pi in par-
allel where all actions are synchronised. Each problem Pi is
defined over the set of facts Fi, a copy of the facts in F such
that Fi ∩ Fj = ∅ for all i ̸= j. For any formula φ over F
and any index i ∈ {1, . . . , n}, we write φ/i the rewriting of
φ where every fact f ∈ F is replaced by its copy fi from Fi.
The reduction of PB is then the classical planning problem
P ′ = ⟨F ′, N ′, A′, I ′, G′⟩ defined by:
• F ′ = F1 ∪ . . . ∪ Fn;
• N ′ = N ;
• A′ is such that for all a = ⟨pre, coneff ⟩ ∈ N , A′(a) =
⟨pre ′, coneff ′⟩ where pre ′ = pre/1 ∧ . . . ∧ pre/n, and
eff ′ = {⟨c/i, eff +

/i, eff
−
/i⟩ | ⟨c, eff

+, eff −⟩ ∈ coneff , i ∈
{1, . . . , n}};

• I ′ = φ(q1)/1 ∧ . . . ∧ φ(qn)/n; and

• G′ = G/1 ∧ . . . ∧G/n.
It has been proved that the valid plans of the conformant

planning problem are the same as the valid plans of the re-
duced classical planning problem: Π(PB) = Π(P ′).
Example 2 Reduction from conformant planning to classi-
cal planning. Let us look at an example to understand how
the reduction of conformant planning works. In practice,
CPCES uses the lifted representation to define the copies Fi

of F . This is done via a multiple interpretation, by adding
a parameter to each predicate which refers to the interpre-
tation. Hence, a PDDL fact pred(p1,...,pk) (where
pred is the predicate and pi are the parameters) is trans-
formed into pred(p1,...,pk,i) where i is the inter-
pretation and refers to the state qi.

In Example 1, the location of the robot is represented by a
tuple (x, y), where x ∈ {x1, . . . , x5} and y ∈ {y1, ..., y5}.
After the second round, CPCES has found two counter-
examples, (x1, y5) and (x5, y1). In the conformant domain
file, action GO E should be defined as:

(: a c t i o n GO E
: p a r a m e t e r s ()
: p r e c o n d i t i o n ()
: e f f e c t (and

(when x1 (and x2 (n o t x1)))
(when x2 (and x3 (n o t x2)))
. . .

)
)

After applying reduction, action GO E in the interpreta-
tion domain file should be:

(: a c t i o n GO E
: p a r a m e t e r s ()
: p r e c o n d i t i o n ()
: e f f e c t
(f o r a l l (? i − i n t e r p r e t a t i o n) (and

(when (x1 ? i)
(and (x2 ? i) (n o t (x1 ? i))))

(when (x2 ? i)
(and (x3 ? i) (n o t (x2 ? i))))

. . .
))

)

The instance file becomes:

(: i n i t (and
(x1 i 1) (y5 i 1)
(x5 i 2) (y1 i 2)

))

The candidate plan generated from the interpretation file
must be valid for all states of the sample. If no further
counter-example exists, this candidate plan is a valid plan
for the conformant planning problem.

SUPERB One way to improve CPCES is to generate op-
timal counter-examples, which is called SUPERB (Zhang,
Grastien, and Scala 2020). In Algorithm 1 Line 9, SUPERB
does not generate counter-examples randomly, but first com-
putes contexts and tags and then updates counter-example
until it finds one that contains as many new tags as possi-
ble. The optimal counter-examples found by SUPERB pro-
vide more information, so SUPERB can find a valid plan in
fewer iterations and less time for problems with more than
one context.

Fast Downward
PDDL uses predicates or propositions to describe planning
tasks, while multi-valued planning task represents the tasks
in SAS+ file by multi-valued state variables. The advan-
tage of multi-valued encoding is that it compresses variables
(Bäckström and Nebel 1995); it also enables richer heuristic

functions. Multi-valued encoding is accomplished by com-
puting sets of facts that are mutually exclusive and putting
them into one variable.
Example 3 In the grid world, the robot can only be in
one of five columns, i.e. any two facts x and x′, where
x, x′ ∈ {x1, . . . , x5}, x ̸= x′, are mutually exclusive. In
multi-valued encoding, these five facts are compacted into
one variable since only one of them can be true in any state:

var0 :
0 : x1
. . .
4 : x5
5 : <none o f t h o s e>

This is the same for y variables, where we use var1 to rep-
resents {y1, . . . , y5}. As a result, the problem is compacted
from ten variables to two.

The data structure that reflects the value transformation in
a multi-valued state variable is the Domain Transition Graph
(DTG). To represent the relationship between multi-valued
variables, FD has to resort to another data structure: Causal
Graph (CG). The third important data structure in FD is Suc-
cessor Generator (SG) that determines the successor states
from a given state and the given operators. SG contains two
nodes: sector node and selection node. Sector node has a se-
lection variable v ∈ V and |Dv + 1| outgoing edges. Each
edge is labeled with d where d ∈ Dv and an additional edge
labeled with ⊥ (don’t care). The generator node is the leaf
node of the sector node that stores all the applicable actions.
The precondition of the action can be obtained by tracing
the path from the root node of the SG to the current node.
Therefore, it is possible to quickly determine the actions ap-
plicable to the current state, and then determine the subse-
quent state. FD uses multi-valued encoding combined with
various search algorithms to find a plan efficiently.

4. Integrating FD Into CPCES
We have seen that CPCES can be used with any complete
classical planner able to parse PDDL files and to output a
valid plan if it exists, including FD. Prior to this work how-
ever, we have had mixed experience with FD. This is illus-
trated in Table 2. The column CPCES indicates the runtime
for several instances from standard benchmarks for an im-
plementation that uses FF; columns CFF and CLM report
the runtime for two implementations using FD, one based on
eager best-first search with FF heuristic and the other based
on LAMA-2011. We see that, with one exception, the im-
plementation that uses FF consistently performs better, and
sometimes several orders of magnitude better.

We hypothesised that the poor performance of FD com-
pared to FF was due to its translation to SAS+. Specifically,
we see two issues:

1. The FD translator does not handle the forall PDDL
construct properly, and produces subpar SAS+ files. With
such poor representation, the FD search engine is then un-
able to fully exploit its capabilities.

2. A translation from PDDL to SAS+ is performed at each
iteration of CPCES, which has a non-negligible cost.

We acknowledge here that the sequence of classical plan-
ning problems that CPCES send to the classical planner has
a peculiar structure that can be exploited. Indeed, each prob-
lem is an “increment” of the previous problem in which the
set of PDDL predicates is increased while the set of actions,
as well as their relation with the existing predicates, remains
unchanged. We formalise this intuition now.

Definition 1 (Problem Increment) Two planning prob-
lems P1 and P2 are independent if their sets of action
names are identical and their sets of facts are disjoint:
(N1 = N2) ∧ (F1 ∩ F2 = ∅).

Given two planning problems P1 and P2 that share the
same set of action names, the merge of these two problems,
denoted P1 ⊕ P2, is a problem P = ⟨F,N,A, I,G⟩ defined
by:

• F = F1 ∪ F2;
• N = N1 = N2;
• A is such that A(a) = ⟨pre1(a) ∧ pre2(a), coneff 1(a) ∪
coneff 2(a)⟩ for all a ∈ N ;

• I = I1 ∧ I2; and
• G = G1 ∧G2.

When P1 preexists P2, we use the notation P for P1 and
P∆ for P2, and call P∆ an increment to P .

A problem increment is therefore a refinement of an exist-
ing planning problem that defines new predicates relevant to
the planning task and specifies how the actions interact with
these predicates. The increment also satisfies the property
that it does not directly interact with the existing predicates.
The definition applies both for PDDL and SAS+ representa-
tions.

Example 4 Consider again the classical planning problem
derived from our grid world example of Fig. 1 with a sam-
ple containing one state (1, 5). The classical planning prob-
lem P1 built via the reduction from the conformant plan-
ning problem contains the facts (x1 i1), . . . , (x5 i1)
(as well as the facts pertaining to the vertical position).

After the new counter-example (5, 1) is added to the sam-
ple, we end up with a classical planning problem P1,2 that
contains the same facts as P1, as well as the facts (x1 i2),
. . . , (x5 i2).

Furthermore, in P1,2 the sets of facts are independent.
This may not be obvious from the description of the actions
because of the forall construct, however if we unfold the
forall, we end up with this description for action GO E:

(: a c t i o n GO E
: p a r a m e t e r s ()
: p r e c o n d i t i o n ()
: e f f e c t (and

(when (x1 i 1)
(and (x2 i 1) (n o t (x1 i 1))))

. . .
(when (x1 i 2)

(and (x2 i 2) (n o t (x1 i 2))))
. . .

))

P1...i P1 P2
. . . Pi−1 Pi⊕ ⊕ ⊕ ⊕

S1...i S1 S2
. . . Si−1 Si⊕ ⊕ ⊕ ⊕

P1...i−1

S1...i−1

Figure 2: Graphical representation of the decomposition pro-
posed in this paper: the classical planning problem P1...i that
CPCES needs solved at the ith iteration can be decomposed
into i planning problems Pj . Each of these problems can be
translated into its own SAS+ representation, Sj , and these
representations merged into a SAS+ representation S1...i

equivalent to P1...i.

The problem P1,2 can therefore be split into two problems
P1 and P2 where P1 is exactly the problem from the previous
iteration and P2 is a classical problem defined only over the
facts of the second interpretation i2.

In practice, because each Pi refers to a single interpreta-
tion, we do not even include the interpretation in the PDDL
representation of Pi.

The benefit of the notions of merge and increment is that
it allows for a simple translation to SAS+ when a translation
of the original problem P already exists. This is summarised
in the following lemma:

Lemma 1 Let P be a PDDL planning problem, and let P∆

be an increment to P . Let S and S∆ be SAS+ representa-
tions of P and P∆ respectively such that

• Π(S) = Π(P);
• Π(S∆) = Π(P∆); and
• the variables of S and S∆ do not overlap.

Then S⊕S∆ is a SAS+ representation of P⊕P∆ such that
Π(S ⊕ S∆) = Π(P ⊕ P∆).

Proof sketch: The proof relies on the property that when
two independent planning problems are merged, be they
modelled in PDDL or SAS+, the valid solutions of the re-
sulting problem is the intersection of the solutions of the
original problems. Hence:

Π(S ⊕ S∆) = Π(S) ∩Π(S∆)
= Π(P) ∩Π(P∆)
= Π(P ⊗ P∆).

From Lemma 1, we now have a procedure for comput-
ing efficiently SAS+ representations of the classical plan-
ning problems produced by CPCES. At each iteration, the

Algorithm 2 Incremental generation of candidate plan.
1: method: produce-candidate-plan(P,B)
2: input: conformant planning problem P =

⟨F,N,A, I,G⟩
3: input: belief B
4: output: a candidate plan, or no plan
5: static: a map S : 2F → SAS FILES
6: if B = ∅ then
7: return ε {Empty plan}
8: end if
9: for all q ∈ B do

10: if S(q) is undefined then
11: S(q) := generate-sas-plus(⟨F,N,A, q,G⟩)
12: end if
13: end for
14: SAS :=

⊕
q∈B S(q)

15: return FD(SAS)

classical planning problem P1...i is defined as the merge of
all the classical planning problems P1, P2. . . to Pi corre-
sponding to the i interpretations (or counter-examples) gen-
erated so far throughout the procedure. P1...i is also the
merge of P1...i−1 and Pi. The SAS+ representation of P1...i

can therefore be obtained by merging the SAS+ representa-
tion of P1...i−1 (computed at the previous CPCES iteration)
with a SAS+ representation of Pi. This is illustrated on Fig-
ure 2 where the vertical operation that translates from P1...i

to S1...i is replaced with the decomposition (to the right), the
vertical translation of each part, and the merge (to the left).

Our approach is summarised in Algo. 2 which implements
the method produce-candidate-plan (Line 5) from
CPCES (Algo. 1). This algorithm assumes a static map/dic-
tionary that keeps track of the SAS translation associated
with each state that it considered in the belief.2 When new
states are available (i.e., S(q) is undefined), a SAS+ rep-
resentation of this state is computed. Then, in Line 14, the
SAS+ representation for the belief is built as the merge of
each state’s representation. Finally, FD is called with this
file.

We see several benefits to this approach. First, it is very
fast, as the translation of each problem Pi is very simple.
Comparatively, the translation of P1...i can be more diffi-
cult because it is not always easy to determine, e.g., how to
partition the facts in order to compute the best SAS+ vari-
ables. Second, it allows us to avoid the use of the forall
PDDL construct which FD seems to have a hard time deal-
ing with (we understand that the forall could be explic-
itly unfolded, and all the cases that it represents be enumer-
ated, but this solution lacks elegance). Third, because each
Pi problem is very small, we could actually spend extra re-
sources to try to optimise the SAS+ encoding; this is some-
thing that would be riskier to do for P1...i.

2This is useful in particular because some variants of CPCES re-
move and re-add counter-examples from the sample (Grastien and
Scala 2018).

5. Experiments
We dub our approach as described in Algo. 2 incremental
CPCES.

We compared five algorithms: classical CPCES with FF
(CPCES), classical CPCES with FD in which we choose ea-
ger best-first search algorithm, best-first open list, FF heuris-
tic (CFF), incremental CPCES in which we choose eager
best-first search algorithm, best-first open list, FF heuris-
tic (ICFF) classical CPCES with FD in which we choose
LAMA-2011 search component (CLM), and incremental
CPCES in which we choose LAMA-2011 search compo-
nent (ICLM). All these are using the SUPERB strategy
to generate counter-examples (Zhang, Grastien, and Scala
2020). LAMA (Richter, Westphal, and Helmert 2011) is a
classical planning system based on heuristic forward search.
LAMA-2008 showed best performance among all planners
in the sequential satisficing track of the International Plan-
ning Competition 2008. LAMA-2011 greatly outperformed
LAMA-2008 in the competition. Since LAMA continuously
searches valid plan until finding a best plan (shortest plan
length), to improve the efficiency, we stop LAMA as soon as
it finds the one valid plan, even though this may not be the
best plan.

Expectations
Since we have simplified the interpretation instance file be-
fore executing multi-valued encoding, the time spent by
ICFF and ICLM should perform better than classical CFF
and CLM. However, the translation part in current incre-
mental CPCES can be further improved, so we do not expect
ICFF and ICLM to be better than CPCES.

Experimental Setup
To assess the usefulness of our algorithm, we ran experi-
ments over the set of benchmarks from Grastien and Scala
(Grastien and Scala 2018). We then implement CPCES,
CFF, ICFF, CLM, ICLM to measure the amount of time
needed to find a valid plan. All these five algorithms are im-
plemented in python.

Our benchmark set contains 8 domains: DISPOSE,
ONE-DISPOSE, BLOCKWORLD, LOOK-GRAB, RAOS-
KEYS, BOMB, COINS, and UTS. Experiments were run
on Ubuntu virtual machine with 8GB memory on Apple M1
chip Macbook Pro. Timeout was set to 600 secs. Each in-
stance was solved three times and the reported time is the
median one.

Results and Analysis
Table 2 reports the total time needed to find a valid plan
by our five algorithms. First, we notice that except for
some complex LOOK-GRAB instances, all the problems
that CPCES can solve within the specified time can be solved
by incremental CPCES as well. This result illustrates that in-
cremental CPCES is indeed a practical way to using FD in
CPCES.

Second, we find that incremental CPCES consistently per-
forms better than simply replacing FF with FD. The differ-
ence is especially obvious in BOMB, COINS, DISPOSE,

Domain Instance With forall Without forall
Number of Variables Number of Iterations Number of Variables Number of Iterations

blockworld p02 115 7 49 8
bomb p20-5 646 21 120 21
coins p15 773 15 884 30
dispose p4-2 916 31 91 31
lookgrab p4-2-2 442 4 12 4
onedispose p3-2 591 32 104 27
raoskeys p2 38 5 24 5
uts p10 454 22 451 22

Table 1: This table shows two results. First, the number of variables in SAS+ file generated by PDDL file with forall and
without forall statements. Second, the number of iterations used to solve corresponding problem.

and ONE-DISPOSE, which suggests incremental CPCES
dramatically increases the efficiency of translation. LOOK-
GRAB and UTS remain very hard for FD to solve.

Third, for some instances, like BOMB p100-1, BOMB
p100-10, COINS p15, COINS p21, ONE-DISPOSE p4-2,
incremental CPCES is even faster than classical CPCES. For
some other instances, incremental CPCES has almost the
same speed as classical CPCES in solving the problem. Such
results are encouraging because it shows that sometimes the
efficiency of incremental CPCES is close to CPCES.

Table 2 also shows the length of the computed plans.
ICFF often computes shorter plans than FF. This is particu-
larly impressive for LOOK-GRAB and UTS, which are the
benchmarks that ICFF struggles with. We suspect that there
is a correlation here: the reason why FF performs better on
these benchmarks is that it is able to compute quickly a poor-
quality plan.

Finally we notice a strange phenomenon, that is, the re-
sults of LAMA is not as good as expected. The time spends by
ICLM is longer than ICFF, and the time spends by CLM is
longer than CFF. Understanding this poor performance will
require further work.

Table 1 displays the number of iterations used to solve the
problem by SAS+ with forall (such as CFF) and with-
out forall (such as ICFF), and the number of variables
in SAS+ files generated from PDDL file with forall and
without forall statements. If we compare those instances
that have the same number of iterations, such as bomb,
dispose, lookgrab, raoskeys, and uts, we find by
using the forall PDDL, FD needs much more state vari-
ables than without forall. For coins, since this prob-
lem is solved by 30 rounds in CPCES without forall but
solved by 15 rounds with forall, it is reasonable that the
number of variables in without forall is larger. This ex-
periments illustrates that without using forall, SAS+ file
is more compacted than using forall. The larger number
of variables is due to the inability for FD to find good par-
titions of mutually-exclusive facts, and explains in part why
the incremental CPCES is more effective.

6. Conclusion
In this article we provide an algorithm to apply the FD sys-
tem in CPCES, which is called incremental CPCES. In each
round, incremental CPCES translates a small part of inter-

pretation instance file to SAS+ file, avoiding spending long
time in translating a complete problem. After translation, in-
cremental CPCES merges the new SAS+ file with the pre-
vious SAS+ file, and then FD searches a plan based on that
SAS+ file.

Our experiment results show that incremental CPCES
with FD is able to reach the level of CPCES with FF. This
is a very encouraging result as this gives us access to many
different search techniques and heuristics.

We see several avenues for future work. We might be able
to further improve the translation to SAS+. For instance,
some of the variables that appear in several merged SAS+
files may have identical variables, particularly when some
aspects of the planning problem are independent from the
initial state. Identifying this symmetry could help further
compact the model. Furthermore, similarly to our incremen-
tal construction of SAS+, we would like to insert incremen-
tality directly into the plan search, i.e., to use as much as
possible the existing search structure rather than replanning
from scratch at each new CPCES iteration. Finally, we need
to investigate further the search algorithms and heuristics
that FD gives us access to; this is particularly interesting
since, as we have seen in this paper, the classical planning
problems have a specific structure unlike existing bench-
marks.

References
Albore, A.; Ramirez, M.; and Geffner, H. 2011. Effective
heuristics and belief tracking for planning with incomplete
information. In Twenty-First International Conference on
Automated Planning and Scheduling.
Bäckström, C., and Nebel, B. 1995. Complexity results for
sas+ planning. Computational Intelligence 11(4):625–655.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Fifth In-
ternational Conference on AI Planning Systems (AIPS-00),
52–61.
Bryce, D. 2006. Pond: The partially-observable and non-
deterministic planner. Sixteenth International Conference
on Automated Planning and Scheduling 58.
Cimatti, A.; Roveri, M.; and Bertoli, P. 2004. Conformant
planning via symbolic model checking and heuristic search.
Artificial Intelligence 159(1-2):127–206.

Grastien, A., and Scala, E. 2017. Intelligent belief state sam-
pling for conformant planning. In International Joint Con-
ference on Artificial Intelligence (IJCAI-17), 4317–4323.
Grastien, A., and Scala, E. 2018. Sampling strategies for
conformant planning. In Twenty-Eighth International Con-
ference on Automated Planning and Scheduling.
Grastien, A., and Scala, E. 2020. Cpces: A planning
framework to solve conformant planning problems through
a counterexample guided refinement. Artificial Intelligence
284:103271.
Haslum, P., and Jonsson, P. 1999. Some results on the com-
plexity of planning with incomplete information. In Euro-
pean Conference on Planning, 308–318. Springer.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Brafman, R. I. 2006. Conformant plan-
ning via heuristic forward search: A new approach. Artificial
Intelligence 170(6-7):507–541.
Hoffmann, J., and Nebel, B. 2001. The ff planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.
Richter, S.; Westphal, M.; and Helmert, M. 2011. Lama
2008 and 2011. In International Planning Competition,
117–124.
Rintanen, J. 2012. Engineering efficient planners with sat.
In European Conference on Artificial Intelligence (ECAI-
2012), 684–689.
Smith, D., and Weld, D. 1998. Conformant graphplan. In
Fifteenth Conference on Artificial Intelligence (AAAI-98),
889–896.
To, S. T.; Son, T. C.; and Pontelli, E. 2015. A generic
approach to planning in the presence of incomplete infor-
mation: Theory and implementation. Artificial Intelligence
227:1–51.
Zhang, X.; Grastien, A.; and Scala, E. 2020. Computing
superior counter-examples for conformant planning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
10017–10024.

Domain Instance Total Time (s) Plan Length
CPCES CFF ICFF CLM ICLM CPCES ICFF

blockworld p01 0.04 0.12 0.16 0.12 0.15 5 4
blockworld p02 0.12 0.45 0.53 24.12 0.54 18 15
blockworld p03 2.05 - - - 2.97 66 -
blockworld p04 91.55 - - - 146.43 141 -
bomb p20-1 0.46 5.16 1.57 - 1.56 40 40
bomb p20-5 0.63 8.02 1.79 - 1.67 40 40
bomb p20-10 0.85 13.02 2.12 - 1.83 40 40
bomb p20-20 1.29 28.12 3.21 - 2.13 40 40
bomb p100-1 34.24 - 29.89 - 55.37 200 200
bomb p100-5 71.34 - 489.46 - 111.17 200 200
bomb p100-10 119.66 - - - 198.87 200 -
coins p10 0.35 0.62 0.66 - 0.52 34 34
coins p12 1.51 4.02 1.96 - 4.18 69 78
coins p15 2.62 6.12 2.66 - 1.08 81 78
coins p16 1.28 5.43 2.06 - 4.33 106 110
coins p17 0.78 3.16 1.29 - 3.03 106 105
coins p18 0.79 4.32 1.71 - 2.15 110 96
coins p19 0.99 5.4 2.25 - 2.47 100 111
coins p20 0.8 3.64 1.38 - 2.21 109 114
coins p21 - - - - 20.28 - -
dispose p-4-1 0.57 2.92 1.33 - 1.36 61 51
dispose p-4-2 1.67 9.48 3.23 - 5.29 58 72
dispose p-4-3 4.28 20.5 6.3 - 25.13 82 94
dispose p-8-1 35.03 - 76.48 - 76.25 326 291
lookgrab p-4-1-1 0.22 3.11 2.07 33.55 2.42 26 14
lookgrab p-4-1-2 0.06 36.91 27.34 39.57 27.28 4 4
lookgrab p-4-1-3 0.05 21.5 30.46 22.49 30.38 4 4
lookgrab p-4-2-1 0.37 4.17 3.58 32.69 3.68 30 14
lookgrab p-4-2-2 0.12 75.65 49.2 80.07 49.16 4 4
lookgrab p-4-2-3 0.07 43.97 54.5 45.96 54.54 4 4
lookgrab p-4-3-1 0.31 6.26 13.58 155.01 26.95 24 14
lookgrab p-4-3-2 0.13 113.85 80.47 122.13 80.67 4 4
lookgrab p-4-3-3 0.11 65.77 84.12 69.19 84.58 4 4
lookgrab p-8-1-1 42.02 595.62 184.63 - 222.9 180 76
lookgrab p-8-1-2 6.7 - - - - 100 -
lookgrab p-8-1-3 3.59 - - - - 58 -
lookgrab p-8-2-1 49.34 - - - - 196 -
lookgrab p-8-2-2 27.48 - - - - 82 -
lookgrab p-8-2-3 12.55 - - - - 64 -
lookgrab p-8-3-1 34.2 - - - - 146 -
lookgrab p-8-3-2 8.41 - - - - 58 -
lookgrab p-8-3-3 5.58 - - - - 46 -
onedispose p-2-2 0.21 0.58 0.59 103.08 0.56 26 18
onedispose p-2-3 0.4 0.97 0.84 - 1.91 38 29
onedispose p-3-2 2.03 3.81 2.57 - 4.31 70 44
onedispose p-3-3 60.99 33.79 78.21 - 105.75 131 66
onedispose p-4-2 - 162.21 21.47 - 266.35 - 84
raoskeys p2 0.07 0.26 0.41 0.39 0.37 17 17
raoskeys p3 0.86 - - - 244.62 57 -
uts p1 0.04 0.17 0.27 0.18 0.26 4 4
uts p2 0.08 0.29 0.36 0.54 0.36 10 10
uts p3 0.12 0.44 0.55 - 0.7 18 16
uts p4 0.19 0.74 0.82 - 0.9 22 22
uts p5 0.34 1.24 0.96 - 1.21 28 28
uts p6 0.49 2.02 1.4 - 2.43 40 34
uts p7 0.7 3.76 2.34 - 5.98 40 40
uts p8 1.12 5.57 4.48 - 5.19 51 46
uts p9 1.61 9.08 7.36 - 9.59 60 52
uts p10 2.07 14.32 13.08 - 16.91 69 58
uts p20 2.12 14.18 13.11 - 14.31 67 58
uts p30 8.36 105.49 186.55 - 188.83 88 88
uts p40 37.1 509.19 - - - 128 -

Table 2: The total conformant planning time of different algorithms. “CPCES” is classical CPCES with FF; “CLM” is classical
CPCES with FD planner using LAMA-2011 search component; “ICLM” is incremental CPCES using LAMA-2011 search
component; “CFF” is classical CPCES with FD planner using eager best-first search algorithm, best-first open list, FF heuristic;
“ICFF” is incremental CPCES using eager best-first search algorithm, best-first open list, FF heuristic.

