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Abstract—Availability and policy-compliance of many commu-
nication networks must be guaranteed at any time, even during
updates. Accordingly, over the last years, the problem of how
to update networks in a manner which transiently preserves de-
sirable properties, has received much attention, especially in the
context of Software-Defined Networks (SDNs). While important
insights have been obtained for many different problem variants,
in general, the design of efficient network update algorithms
remains challenging, and usually new algorithms have to be
developed on a case-by-case basis.

This paper is motivated by the vision of fully automated
communication networks in which consistent update schedules
are synthesized automatically. In particular, we propose a game
approach to the network update synthesis problem, and present
NetStack, a tool based on Stackelberg games which transiently en-
sures fundamental properties such as reachability, loop-freedom,
and waypointing. Our approach features a high flexibility. For
example, with a simple extension, NetStack can also support
concurrent updates, where in each round multiple routers are
updated simultaneously. Our empirical evaluation shows that
NetStack scales to realistic network sizes, and can compute
optimal concurrent schedules.

I. INTRODUCTION

Communication networks are the backbone of our digital
society. The constant availability of communication services
is critical for private and business users, and due to dual-use
technology, even for emergency response and crisis communi-
cation. In order to meet their stringent dependability require-
ments, communication networks need to provide reachability
and be policy-compliant even during updates. Indeed, with the
increasing scale and the current trend to operate networks in
a more adaptive or even “self-driving” manner, such updates
are likely to become more frequent.

However, ensuring even basic correctness properties, such
as reachability, loop-freedom, or waypointing, during network
updates is challenging: Even if the old and and the new
network configurations are policy-compliant and valid, these
properties may be violated transiently. Given the relevance of
the problem, over the last years, hundreds of approaches to
schedule network updates consistently have been proposed in
the literature, especially in the context of Software-Defined
Networks (SDNs). Most of the solutions to this NP-hard [1]
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problem however are manually-designed algorithms or opera-
tional approaches [2].

In this paper, we are interested in automated tools to
synthesize network update schedules which provably ensure
different properties transiently. Our perspective is motivated by
the recent success of automated tools to verify and synthesize a
given configuration of networks [3]–[5], as well as the emer-
gence of first automated tools to update configurations. For
example, to update networks consistently, the NetSynth tool
uses counterexample-guided search and incremental model
checking [6], the recent Petri nets tool models the router net-
work as a distributed system [7], [8], and Snowcap synthesizes
configuration updates considering hard and soft goals [9].

Our main contribution is NetStack1, a flexible synthesis
tool for the network update problem, based on a Stackel-
berg planning game. Our tool guarantees reachability, loop
freedom, and waypoint enforcement throughout the whole
update process, and also supports concurrent updates, finding
the optimal solution with the minimum number of update
rounds. We report on an empirical evaluation using a state-
of-the-art Stackelberg planning tool, and find that compared
to existing tools, NetStack can solve most of the real-world
network examples within comparable time and memory limits.
We are not aware of any other such game approach to solving
the network update problem.

To support follow-up work and to ensure reproducibility,
we make all sources, tools, scripts and experimental data
publicly available as a reproducibility package together with
this paper [10].

II. MODEL AND PRELIMINARIES

In this section we present the network update problem
more formally. We also introduce the preliminaries which are
necessary to be able to model the problem with Stackelberg
planning games in the following sections, and to synthesize
consistent network update schedules.

In general, the network update problem asks for a schedule
(a sequence of rounds), consisting of configuration update
operations, which transition a communication network from
an old to a new configuration while preserving consistency
guarantees at any time. Each round consists of an update
sent from an SDN controller to the routers, waiting for the
acknowledgements that confirm the successful update, and
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then initiating the next round. The update operations are
in general modifications of rules in the routing table. The
consistency guarantees are similar to those checked during
configuration validation and will be formally defined later.

If every round contains only one update, we say that the
schedule is sequential. It is possible that a round can contain
multiple updates, i.e., changes of multiple rules at multiple
nodes are triggered. We will call these concurrent updates. For
concurrent updates, operations within a round are not executed
simultaneously by the routers. This causes the relative order
of the updates within a round to be undefined [2].

A. Network, Paths, and Routing

In this paper we follow the definitions as given by Didriksen
et al. [7]:

Definition (Network). A network is a directed graph with
routers represented as nodes and links as edges.

Each router contains a routing table (the configuration) with
rules defining which link is taken for a specific packet type.
The packet type is defined by its header attributes, mainly by
its destination. We can treat each packet type as an independent
(separate) problem.

Definition (Routing). The outgoing link for our considered
packet type as implied by the rules in one router is defined as
the routing of the packet in that router.

Definition (Routing Configuration). The set of routings for all
routers is the routing configuration.

A packet following the forwarding rules (i.e., the routing)
from router to router results in a sequence of visited routers.

Definition (Path). The sequence of routers a packet travels
along, according to the routing rules (the route implied by the
different rules), is called a path.

B. Consistency Guarantees

We aim to preserve consistency guarantees covering con-
nectivity and policy aspects as they are typically considered
in the literature [2].

Definition (Reachability). The guarantee reachable(u,v) is
satisfied if there is a path from node u to node v.

Definition (Loop-Freedom). The guarantee loopfree(u) is
satisfied if the path starting at node u does not end in a loop
(does not hit the same node more than once).

Loop-Freedom is given if the path ends in a node without a
defined routing. For a combined Loop-Freedom and Reacha-
bility guarantee, with the same starting node u, the final node
v must therefore be the one without a rule for further routing.
These two properties together give the connectivity guarantee.

Definition (Waypointing). The guarantee waypoint(u,v,w) is
satisfied if every path from node u to node v contains the
waypoint node w.
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r5
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Fig. 1. A network with 7 nodes. The initial routing is shown with black
arrows and the final routing is shown with red dashed arrows. Reachability
r1 → r7 must be guaranteed and the waypoints at r2 and r5 must always
be in the path.

Waypointing is a policy guarantee and is often used to
guarantee that all packets get routed via special nodes like
firewall nodes.

C. Network Updates and Scheduling

To replace an existing network configuration with a new
one, the routing rules must be updated. So we define the
following for the sequential update case:

Definition (Routing Update). The change of the routing of our
considered packet type within one router from an existing to
a new routing, is called routing update.

As we consider only one packet type and at most one update
per node, the existing routing is the routing of the initial
configuration, and the new routing is the routing according
to the final configuration. This also means that nodes with a
different initial and final routing will be updated exactly once
and nodes with the same initial and final routing will not be
updated at all. For a router r, with init(r) we denote the router
pointed in the initial configuration and with end(r) the one
pointed in the final configuration.

To transition the whole network from the initial to the
final configuration, a sequence of multiple routing updates is
necessary. As we use sequential updates, each step in this
sequence will represent one round of network updates.

Definition (Network Update Schedule). A network update
schedule is a sequence of routing updates which transition
the network from the initial routing to the final routing
configuration.

After each round, a different routing configuration is active.
The consistency guarantees can be checked after each round.

Definition (Consistent Network Update Schedule). A network
update schedule is consistent in respect to a given set of
consistency guarantees if and only if after each round of the
update schedule all given consistency guarantees are fulfilled.

The goal is now to find a consistent network update schedule
which transitions our network configuration from the initial to
the final routing configuration. We can therefore define:

Definition (Network Update Problem). The network update
problem for a given set of initial and final routings and a given
set of consistency guarantees, is to find a consistent network
update schedule which transitions the network from the initial
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r1

r2

r3

r4

r5

r6

r7

Batch 2: Updating r3 and r6.
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Batch 3: Updating r1 and r4.

Fig. 2. A consistent concurrent network update schedule for the network update problem from Fig. 1. Current routings shown with black arrows, target
routing shown using red dashed arrows.

to the final routings, fulfilling the consistency guarantees in
each round.

Fig. 1 shows a network with 7 nodes. Packets originating
at r1 must reach r7 and always travel over r2 and r5. Six of
those routers need to be updated and therefore a sequential
update schedule needs six rounds, e.g., r2, r3, r1, r5, r6, r4.
By contrast, the simple r1, r2, r3, r4, r5, r6 is not consistent
as, after updating r1, packets could go to r6 without passing
via r2.

D. Concurrent Updates

In addition to be consistent, network update schedules
should also be short, using a minimal number of rounds. As
a schedule for sequential updates contains per definition only
one node per round, to be able to reduce the number of update
rounds, the network updates should be combined into batches.

Definition (Update Batch). We define an update batch as a
set of routing updates which can be scheduled concurrently
but their execution order is undefined.

As the execution order of the routing updates within a batch
is not defined, all permutations of the updates can occur.
Therefore the consistency guarantees must be checked for
every permutation.

Definition (Consistent Update Batch). An update batch is
consistent with respect to a given set of consistency guarantees
if and only if every permutation of a subset of the update batch
generates a routing configuration which fulfills the consistency
guarantees. We define such an update batch as a consistent
update batch.

Those update batches can be combined into a new network
update schedule.

Definition (Consistent Concurrent Network Update Schedule).
We call a combination of consistent update batches, which
transition the network from the initial to the final routing con-
figuration, as a consistent concurrent network update schedule.

The number of batches can be any number from 1 (assuming
that there is at least 1 routing update) up to the number of
necessary routing updates (containing 1 routing update per
batch).

Definition (Batch Count). We define the number of batches
within a concurrent network update schedule as the batch
count.

The goal is to minimize the batch count to reduce the
amount of update rounds necessary to reconfigure the network.

Definition (Optimal Consistent Concurrent Network Update
Schedule). We define every consistent concurrent network
update schedule for a network update problem for which no
other consistent concurrent network update schedule with a
smaller batch count exists as an optimal consistent concurrent
network update schedule.

The network shows two similar parts (separated by r4).
Those parts of the network can be updated concurrently
reducing the rounds to 3 update batches, each updating 2
routers, as shown in Fig. 2. As there is no other consistent
update schedule with less batches this is an optimal consistent
concurrent network update schedule.

E. Stackelberg Planning and Games

In this paper, we propose a Stackelberg approach to flexibly
and automatically solve the network update problem. More
specifically, we are interested in Stackelberg planning, a
framework introduced by Speicher et al. [11] where there are
two players, a leader and a follower, that perform a sequence
of actions. The leader acts first, executing the entire action
sequence. Then, after observing the resulting outcome, the
follower decides on its own sequence of actions. The objective
of the follower is to minimize the cost of its own plan, which
is just the sum of the costs of the actions performed, or infinity,
ensuring that the resulting state satisfies a given goal condition,
while minimizing the cost of its own action sequence.

The follower aims to perform the sequence of actions of
minimum cost such that the resulting state satisfies a given
goal condition. The leader executes a sequence of actions
before the follower, aiming to find a sequence of actions
of minimum cost, such as the resulting state maximizes the
followers plan cost. An equilibrium is a pair of a leader and
a follower plan, such that the leader cannot decrease the cost
of his own plan without decreasing the cost for the follower
as well. Multiple equilibria may be found, producing a Pareto
frontier.

Formally, a Stackelberg planning task is a tuple
(F ,AL,AF , I,GF ) [11]: F is a set of Boolean propositions



that may be true or false. A state s ⊆ F is a subset of facts,
corresponding to the facts that are true in s. I is the initial
state. The goal condition GF ⊆ F is a set of facts that the
follower must make true, so that the follower’s plan must end
in a state sG such that GF ⊆ sG.

AL and AF are the set of actions available to the leader and
follower agents, respectively. Each action a ∈ AL ∪AF has a
precondition pre(a) ⊆ F , a negative precondition pre−(a) ⊆
F , add effects add(a) ⊆ F , delete effects del(a) ⊆ F , and
a non-negative cost cost(a) ∈ Z+. An action a is applicable
in a state s if its preconditions are true, i.e., pre(a) ⊆ s and
pre−(a) ∩ s = ∅. In that case, the result of applying a in s
is s[a] = (s \ del(a)) ∪ add(a), i.e., the state is changed by
making all facts in add (a) true and all facts in del (a) false.
All other facts remain unchanged. A sequence of actions π =
a1, . . . , an is applicable in s0 if ai is applicable in si−1 and
si = ai(si−1) for all i ∈ [n]. The resulting state is π(s0) = sn.
The cost of a sequence of actions is just the summed up costs
of the individual actions cost(π) =

∑
i∈[n] cost(ai).

A leader plan πL is any sequence of leader actions in
AL that is applicable in I. A follower plan is any sequence
of actions in AF that is applicable in πL(I) such that the
resulting state satisfies the goal: πF (πL(I)) ⊆ GF .

Given a leader plan, πL, the corresponding follower cost
is the minimum number of actions in any valid follower plan
or ∞ if no such plan exists. The objective of the leader is
to minimize the cost of their own plan, while maximizing the
follower cost. The result is a Pareto frontier containing all non-
dominated plans. The best leader and follower plans, building
up the Pareto frontier, can be found by solving the Stackelberg
task with an off-the-shelf solver/planning tool. Here, we will
be interested in what is the minimum cost under which the
leader can force an infinite cost for the follower. In that case,
we say that the task is solvable by the leader.

III. SEQUENTIAL UPDATES

We first present NetStack’s synthesis approach for the
sequential update problem. In particular, we show how the
network update problem can be reduced to a Stackelberg plan-
ning task, by splitting it into two phases: Finding a network
update schedule followed by validating its consistency. These
two phases can be perfectly distributed between leader and
follower. The leader’s plan consists of a sequence of router
updates, assigning each switch to a separate batch. After this,
the follower’s goal is to prove that the leader plan is not a valid
consistent network update schedule. Therefore, the follower
plan consists of a trace that breaks one or more guarantees. The
leader plan is therefore a consistent network update schedule
if and only if the follower cannot find a plan to reach its goal.

Given a network update problem, we define the Stackelberg
planning task as follows. We denote the set of routers by R.
We define a set of time steps T = {t0, . . . , t|R|}, one for each
router, plus a last step. To model the network guarantees, we
define a set of packets P , such that we have one packet p ∈ P
for every reachability guarantee (p.u, p.v). We denote p.W to

Algorithm 1: Sequential Network Update
Data: Network update problem: routers R, packets P
Result: Consistent network update schedule

while router permutations left do
leaderPlan←
LeaderChoosesShortestUpdateSequence();

if not all routers assigned in leaderPlan then
continue;

if ConsistentSchedule (leaderPlan) then
return leaderPlan;

return No consistent schedule exists;

Function ConsistentSchedule(leaderPlan):
foreach timestep ∈ t0, . . . , t|R| do

// Follower Constructs Routing Table
foreach router in leaderPlan do

if router in leaderPlan after timestep then
routingTable[router]← init(router);

else
routingTable[router]← end(router);

// Follower sends packets
foreach p ∈ P do

packetPos← p.u;
packetPath← {p.u};
while packetPos ̸= p.v do

if packetPos is dead-end(p.v) then
return false;

// move packet
packetPos←
routingTable[packetPos];
// check for loop
if packetPos in packetPath then

return false ;
packetPath.insert(packetPos);

if not every waypoint in packetPath then
return false ;

return true;

be the set of routers such that there is a guaranteed waypoint
(p.u, p.v, p.w) for p.w ∈ p.W .

Algorithm 1 shows a pseudocode that encodes the same
checks as are encoded in the Stackelberg planning task. Both
are logically equivalent in the sense that they will return
the same result. We remark, however, that algorithms solving
the Stackelberg planning task will use optimizations to avoid
enumerating all possible options.

Then, the Stackelberg task has the following facts:
• updater,t: whether the leader has chosen to update router

r ∈ R at time step t ∈ T .
• updatedr: whether the leader has chosen to update router

r ∈ R at any time step.
• step-updatet: whether time step t is the first one that has

not been assigned by the leader.
• step-attack t: whether the follower decides to attack the

update schedule right before time step t.
• chosen: whether the follower has already chosen at which

time step to attack.
• linkr,r′ : whether packets can be moved from r to r′

• atp,r: whether packet p is at router r.



TABLE I
ACTIONS IN THE STACKELBERG TASK.

Action name Parameter Constraints Precondition Add Delete

SCHEDULE-UPDATEL(r, t) ¬updatedr , step-updatet updatedr, updater,t, step-updatet+1 step-updatet

CHOOSE-STEPF (t) ¬chosen step-attack t, chosen
ADD-LINKF (r, r′, t, t′) (t′ < t ∧ r′ = end(r))∨ step-attack t, updater,t′ linkr,r′

(t′ ≥ t ∧ r′ = init(r))

MOVEF (p, r, r′) r ̸= p.v linkr,r′ , atp,r atp,r′ , visitedp,r′ atp,r
REACHED-LOOPF (p, r, r′) r ̸= p.v linkr,r′ , atp,r , visitedp,r′ schedule -invalid
REACHED-DEAD-ENDF (p, r, r′) r ̸= p.v, r′ ∈ deadp.v linkr,r′ , atp,r , schedule -invalid
WAYPOINT-MISSEDF (p, r, r′, w) r′ = p.v, w ∈ p.W linkr,r′ , atp,r,¬visitedp,w schedule -invalid
NOT-SCHEDULEDF (r) ¬updatedr schedule -invalid

• visitedp,r: whether packet p has passed through r.
• schedule -invalid : whether the follower has proven the

schedule suggested by the leader to be invalid.
In the initial state, all facts are false except

step-update0, atp,p.u, and visitedp,p.u for the starting
position of each packet. The follower goal is
GF = {schedule -invalid}. Table I details the actions
that are available for the leader and the follower, parametrized
by time steps t, t′ ∈ T , routers r, r′, w ∈ R, and packets
p ∈ P . The task has an action for each combination of the
parameters, subject to the parameter constraints.

A. Leader Plan

All leader actions are of the form
SCHEDULE-UPDATEL(r, t) and correspond to scheduling
the update of r at time step t. Applying the action sets the
corresponding updater,t fact to true, and increases the time
step. This ensures that the leader can update exactly one
router at each time step. The precondition ¬updatedr ensures
that the same router cannot be assigned to two time-steps
so each leader action sequence corresponds to an update
schedule, i.e., a permutation of (a subset of) the routers.

B. Follower Plan

The follower plan starts after the leader has decided the
update schedule by setting the value of all updater,t variables.
The follower aims to attack the network update sequence by
finding a situation where a consistency guarantee is violated.
To do so, there are follower actions that will allow the follower
to reach the goal fact schedule-invalid if and only if the
schedule chosen by the leader is not valid. We identify four
conditions under which the schedule is invalid:

1) Some router has not been scheduled.
2) A packet can perform a loop, reaching the same node

twice.
3) A packet can reach a dead-end from which the target

cannot be reached. We denote by deadr the set of routers
from which r cannot be reached.

4) A packet can reach its target without passing through
some waypoint.

The first case, is easily handled by actions
NOT-SCHEDULEDF (r) that immediately add the follower’s

goal and whose precondition evaluates to true if there is at
least one router not assigned.

For the other cases, the follower needs to move a packet
across the network in a way that is consistent with the
update schedule chosen by the leader. To do that, the first
action, CHOOSE-STEPF (t), chooses a single update round
under which the packets will be sent. Then, the follower can
apply ADD-LINKF actions to generate the routing table for the
network at the chosen update round. The parameter constraints
model the fact that all routers updated in a previous round will
be assigned to its final routing, whereas the remaining routers
will use their initial routing.

Once links have been established, the follower also has
actions MOVEF (p, r, r′) to move packets through the network.
According to the initial state, the packet starts at node u
defined by the guarantee which needs to be checked. Moving
the packet ends after it reached the target node v. This is
specified by the parameter constraint, which forbids moving a
package if it is already at the target router.

The last three actions correspond to the winning conditions
for the follower. REACHED-LOOPF checks if the packet can
be moved to a router that has already been visited (as tracked
by the visitedp,r facts). REACHED-DEAD-ENDF checks if it is
possible to reach a node from which the target is unreachable.
Finally, WAYPOINT-MISSEDF checks if it is possible to reach
the target without visiting any of the waypoints. If any of
those actions is applicable, the follower can achieve the goal,
proving the schedule chosen by the leader to be invalid.

Proposition 1. Given a Network Update Problem, the Pareto
front of the corresponding Stackelberg planning task contains
an entry whose follower cost is ∞ if and only if a consistent
network update is possible.

Proof Sketch. Assume the contrary.
Case 1: If the Pareto front does not have an entry with

follower cost ∞, then there is no consistent schedule. Assume
that there is a consistent network update. Then, the leader plan
πL corresponding to such update ends in some state πL(I) for
which there exists a follower plan reaching schedule -invalid .
Such a plan provides a trace of MOVEF actions that violates a
reachability and/or waypoint guarantee, contradicting that the
network update is consistent.



Case 2: If the Pareto front has an entry with follower
cost ∞, then there is a network update corresponding to the
leader plan πL. If such an update is inconsistent, then some
guarantee could be violated. If this is a (u, v)-reachability
guarantee, then there is a point in the update sequence ti
where a packet being sent would not reach the target. But
then, there is a follower plan with finite cost that starts with
CHOOSE-STEPF (ti), where the packet will end up in a dead-
end and or loop, contradicting that the follower cost is ∞.
Similarly, if a (u, v, w)-waypoint guarantee is violated, then
there is a plan where the packet is moved to v without going
through w, so that the action WAYPOINT-MISSEDF becomes
applicable. This contradicts that some guarantee is violated
and therefore πL corresponds to a consistent schedule.

Corollary 1. NetStack is sound and complete.

C. Solving Stackelberg Tasks

The most straightforward way for solving Stackelberg tasks
is to enumerate all possible sequences of leader and follower
actions. However, a main advantage of encoding the problem
as Stackelberg planning task is that one can make use of
existing solvers that can avoid the exploration of large portions
of the state space. We use the Stackelberg planning tool,
Symbolic Leader Search [12] and provided as a free open
source tool [13]. It is an extension of the Fast Downward
planning system [11], [14].

The tasks described in previous sections are encoded in
the Planning Domain Definition Language (PDDL) [15], [16],
which divides the definition into a domain and a problem file.
The domain file is written manually, and resembles the task
definition from Table I, where all actions are parametrized by
objects of different types. For each concrete network update
problem, there is a distinct problem file, which specifies the
objects for all routers and timesteps in a particular network
including the initial state and all details of the model (e.g.,
init(r) and end(r) for every router). NetStack automatically
generates PDDL problem files from network update problem
descriptions in JSON format. Our tool uses the same data
format as used by Didriksen et al. in their experiments with
the TAPAAL tool [7]. This allows us to run experiments with
the same input data and get comparable results.

Symbolic Leader Search enumerates the space of possible
sequences of leader actions using symbolic search [17]–[19]
with Binary Decision Diagrams (BDDs) [20]. As every router
can be assigned to any time slot, the representation of all
possible update schedules of a given length as BDDs is often
compact.

Then, the solver will pick a leader schedule in the set and
perform a secondary symbolic search with follower actions in
order to find an inconsistency. If no inconsistency is found,
then the solvers stops successfully returning the consistent
schedule. If an inconsistency is found, regression is used to
find the set of all schedules that contain the same inconsistency
and all of them are removed from the set of leader schedules.
Furthermore all plan suffixes are also efficiently stored as

BDDs, so that subsequent follower searches can terminate
early if such a plan suffix can be re-used.

We remark that this is only a candidate algorithm for solving
Stackelberg planning problems. Our compilation can be used
with alternative algorithms, e.g., which perform branch-and-
bound with partial-order reduction [11], [21], [22].

We apply a minor modification to the solver, ignoring the
cost of follower plans and only keeping information to whether
the follower cost is ∞ or not. This is beneficial as it avoids
the computation of the entire Pareto front, and allows stopping
the follower searches as soon as a plan is found (i.e., as soon
as an inconsistency is found in the schedule chosen by the
leader) without looking for the lowest-cost follower plan.

D. Preprocessing

Using preprocessing of the network update problems, we
can implement further optimizations before compiling them
into Stackelberg planning tasks. These optimizations aim to
reduce the number of necessary rounds by minimizing the
number of routers. We identify two classes of routers that can
be removed. We find that many of the real-world examples
of the Topology Zoo [23], [24] have such non-changing and
dead-end routers defined in the following, and hence these
optimizations can greatly improve the performance of our tool.

1) Non-Changing Routers: As we consider cases where
every router gets updated at most once, routers with the
same initial and final configuration will not be updated at all.
Therefore, there is no need to include those routers in the
update schedule. However, it is still necessary to consider their
routing when sending packets through the network. Therefore
the generator tool will remove all non-changing routers, and
update the remaining routing tables by changing the targets
of the remaining routers whenever they pointed to one of
the removed routers. Seeing the network as a graph this
is equivalent to replacing a node (the non-changing router)
including its incoming and outgoing edge with a single edge.
Also, if any waypoint w is removed, then because w is also a
non-changing router, always routing to q, q will become the
new waypoint.

2) Dead-End Routers: Another special case are routers
which have either at their initial or their final configuration
a route to a dead-end (dropping the packets).2 First we
consider the special case of routers which only have a target
node in their final configuration and drop all packets in the
initial configuration. As Didriksen et al. showed, those routers
will not influence the network behavior with respect to the
reachability and waypoint policy if they received their update
already before all other routers [7]. This can easily be seen,
as any packet reaching its destination cannot have a dead-end
router in the path. The packet would have been dropped before
it reached the destination. Therefore these routers can not see
any of the packets and so their configuration can not influence
the network behaviour. So we can update those routers already

2We can ignore routers here which always have a dead-end configuration
as they were removed by the previous optimization step already.



before we update all other routers. This means that we do not
need to consider them in the Stackelberg model at all. We
remove them in the same way as we removed the non-changing
routers, only considering their final configuration.

Due to symmetry we can do the same for routers which drop
all their packets in the final configuration. We can update them
in rounds at the end of our schedule and also remove them
from the Stackelberg model.

IV. CONCURRENT UPDATES

We now show that NetStack can be generalized quite flexibly
to more involved settings. In particular, we consider concurrent
updates, which can not only reduce the number of rounds to
be considered by the Stackelberg model, but also the number
of rounds of the final network update schedule. Concurrent
updates can therefore significantly improve the time needed
to roll out the update to the network.

The extension needs two main modifications on our Stack-
elberg model. On the one hand, the leader must generate a
schedule of update batches instead of single updates. On the
other hand, to ensure that all batches are consistent update
batches, the follower must be extended to try to find a subset
of any permutation of updates within a batch which breaks
a guarantee. Both extensions are rather easy to add to our
model due to the flexibility we have by using Stackelberg plan-
ning games. We split the leader action, SCHEDULE-UPDATEL,
which assigns a router to an update round and then increases
the round number, into two actions:

• SCHEDULE-UPDATE-CONCURRENTL(r, t): Assigns a
router to the current update round, without increasing the
round number.

• SCHEDULE-NEXT-STEPL(t): Increases the round number.
The leader will therefore generate plans which can
contain multiple routers in one round. We assign all
SCHEDULE-UPDATE-CONCURRENTLactions a cost of 0, and
all other actions have a cost of 1, so that the cost of a leader
plan directly corresponds to its number of batches.

To allow the follower to evaluate all subsets of all permu-
tations of updates within a round, we have to modify the
parameter restrictions of ADD-LINKF by (t′ ≤ t ∧ r′ =
end(r)) ∨ (t′ ≥ t ∧ r′ = init(r)), so that for all the routers
scheduled at the chosen round we allow for adding the link
to either init(r) or end(r). This allows the solver to choose
between both configurations for routers that are being updated
in the chosen round. This non-determinism forces the solver
to check all variants.

These two extensions allow our Stackelberg model to gener-
ate consistent concurrent network update schedules. As lower-
cost leader plans are preferred, the Stackelberg Pareto front
will contain a consistent schedule with the least amount of
batches if and only if one exists.

A special consideration is required regarding the dead-
end router optimization. Dead-end routers can be added as
additional first and last rounds. This can result in suboptimal
solutions with up to 2 rounds more then necessary. In some
situations other routers can be combined with the dead-end

TABLE II
SOLVED INSTANCES OF OUR TOOL WITHIN 1 HOUR

Tool Solved Instances Timed-Out(>1 hr)
Stackelberg sequential 859 57
Stackelberg concurrent 878 38

routers making these extra rounds avoidable. To be able to
consider these cases in the model, without adding the dead-
end routers to the model, we use four different routing sets
for every router. The model will use one set dependent on the
round the router is assigned to. In the first round the initially
dead-end routers are still set to drop packets, therefore all
routers which are targets, will also be set to drop packets. This
is a valid assumption as the worst case which can occur is that
in the first round all dead-end routers will not get updated, but
all other routers of the first batch will be. The same assumption
can be done for the last round, which also needs a separate
routing set. All other rounds use the same routing set as we use
for the sequential update model. The fourth special routing set
is necessary for the case that the solver tries to find a solution
with one round only.

All these optimizations are implemented in the NetStack
tool, and in the Stackelberg models, which we use for the
experiments. We provide separate models implemented in two
domain files for the sequential and the concurrent update
mode. The problem files generated by NetStack are compatible
with both the sequential and the concurrent model as the initial
state in the problem files contains facts for both.

V. EMPIRICAL EVALUATION

We conducted an empirical evaluation to study the perfor-
mance of our approach and quality of NetStack’s solutions,
also compared to existing tools: NetSynth [6], TAPAAL [7],
and Snowcap [9].

A. Methodology
As base data for our experiments we use the network update

problems generated by Didriksen et al. [24] out of the topology
Zoo [23] database, which is a set of network topologies from
real internet providers. This data set contains realistic networks
and network updates together with reachability and waypoint
guarantees. It also contains synthetically generated networks.

We validated that NetStack provides correct answers. On the
one hand, we run our tool on a set of simple problems with
between four to seven nodes for which solutions are known.
On the other hand, we compared the results against the output
of the TAPAAL tool [7] regarding solvability. Both tests are
included in our reproducibility package.

We run our experiments on a cluster of AMD EPYC 7551
CPUs with disabled hyperthreading. We limit the execution
time of one problem solver to 1 hour and the memory to
7 GB. These settings are the same as those which were used
by the tools we compare with [7]. For the sequential update
problems, we nevertheless rerun the experiments of the tools
we compare with to have comparable performance values.
Everything necessary to reproduce the experiments is available
in the reproducibility package.
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(a) Topology Zoo capped at 100 seconds.
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(b) Synthetic Disjoint Networks.

Fig. 3. Number of instances solved as a function of runtime.
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Fig. 4. Topology Zoo - Sequential vs. Concurrent Runtime. The crosses at
the border are showing instances which could only be solved by sequential
(blue) or concurrent (red) mode.
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Fig. 5. Topology Zoo - Rounds needed for Sequential, Sequential with Dead-
End Router Optimization and Concurrent Updates.

B. Results

Fig. 3a compares our tool to the state of the art on generating
sequential network update schedules. The results show that our
tool is not fully competitive when restricted to generating se-
quential schedules. Fig. 3b shows the comparison on synthetic
networks, which contain a high number of dead-end routers. In
this case, our tool is able to solve all instances outperforming
NetSynth for most instances. This shows the effect of the
dead-end router optimization. The results of TAPAAL, which
uses the same optimization, confirms this having even better

performance.
One of the main advantages of NetStack, however, is that

it has great flexibility for modelling additional constraints. As
explained in Section IV, a minor modification to the PDDL
models is sufficient for obtaining consistent concurrent sched-
ules that minimize the number of rounds. This is desirable
because it will reduce the time required for the network to
converge to the new update.

The results in Fig. 3a already show that, even though in
principle, there are many more possible concurrent update
schedules than sequential ones, the Stackelberg planning tool
is not heavily affected by this. In fact, the reduced number of
rounds may be beneficial. Table II shows that, within the full
runtime of our experiment of 1 hour, the concurrent mode can
solve more instances (95.9%) of the real-world examples in
the Topology Zoo data then the sequential mode (93.8%).

We ran a more detailed comparison of the runtime of
computing the optimal sequential and concurrent network
update on the same network. Fig. 4 shows that there is no clear
winner, and that sometimes our tool can find the concurrent
schedule in less runtime than the sequential one.

Fig. 5 shows that the dead-end router optimization can
reduce the number of rounds substantially, by performing all
the updates of the ignored routers at the same time. The
concurrent mode reduces the number of rounds even more,
and most updates can be performed in two rounds.

VI. ADDITIONAL RELATED WORK

The question of how to update networks consistently lies
at the heart of more automated and adaptive network op-
erations, and has already been studied intensively in the
recent literature. Besides accounting for temporal changes of
the traffic demand [25], network updates are also needed to
adapt to policy changes, to support planned maintenance or
service relocation, or to react to failures. For a comprehensive
overview of the field we refer to the survey by Foerster et
al. [2]. Our model in this paper is generally known as the
per-node update model in the literature, which has the advan-
tage that it does not require packet tagging [26]. Originally
introduced by Mahajan and Wattenhofer [27], in this model,
batches of updates are scheduled over time. The model has



already been subject to extensive research, e.g., [1], [28]–
[33], and due to space constraints, we refer to the survey [2]
for an overview. While most existing literature on this model
focuses on feasibility [33], sometimes also the duration of the
update, measured in the number of rounds, is considered [34].
Ludwig et al. [28] showed that 2-round loop-free updates
can be computed in polynomial time, but finding 3-round
schedules is already NP-hard. Most existing literature on the
per-node update model revolves around logical properties like
loop-freedom [28], blackhole-freedom [35], waypointing and
service chaining [1], etc.

VII. CONCLUSION

We developed a tool for synthesizing consistent network up-
date schedules using a Stackelberg game approach. We showed
that the tool can synthesize schedules for both sequential and
concurrent update batches. Even if our tool cannot outperform
current tools generating schedules for sequential updates, we
showed the flexibility of our approach by extending our
Stackelberg model to support concurrent updates. Indeed, we
consider the possibility to simply add new rules/actions a
substantial advantage of our approach. Our simulations on
real-world networks showed that the concurrent extension does
not have a negative performance impact on our Stackelberg
based tool, but generates much shorter sequences. This can
be a major advantage for quickly rolling out those network
updates. Therefore we believe that this approach has the po-
tential for solving similar problems, which will be interesting
to investigate in future work. We also see a potential for
further optimizing our Stackelberg model for the used solver
tool, which we did not explore yet. This could improve the
performance also for the cases where we could not compete
with other tools yet.
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