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Abstract

The execution of plans in practical applications are always
subject to adversarial conditions. Sometimes these conditions
are intentional, e.g., non-collaborative agents are attempting
to fail the plan being executed. Other times they are not, e.g.,
weather conditions or even the actions of our collaborators.
Building on an existing counter-planning and plan-critiquing
framework, called Murphy, this paper introduces our capabil-
ities to help assess adversarial effects on plans. We describe
the original Murphy framework, our extensions to Murphy
to support adversarial reasoning, and our example use cases
demonstrating our proposed approach. We conclude with a
discussion on the challenges of this problem and our planned
future work.

1 Introduction
Most automated planning systems presume that the sys-
tem will have primary responsibility for constructing a plan,
that when executed achieves the goals. In practical appli-
cations such as collaborative teamwork planning, logistics
planning, air vehicle planning and scheduling, intrusion de-
tection problems, cybersecurity, and others, this classical
premise does not hold: the system that is executing plans
encounters uncontrolled conditions that break the generated
plans. Furthermore, even if the automated planners can gen-
erate and execute plans, often the responsibility of planning
still remains with human planners. This can be because the
automated system lacks the ability to handle the complexity
of a real world situation, or simply because the human plan-
ners do not fully trust the system with the full responsibility
of planning. Therefore, the system must be able to explain
the adversarial conditions it encountered to the users both
during planning and execution.

Traditional conditional or contingency planning ap-
proaches (Barish and Knoblock 2002; Pryor and Collin
1996; Anderson, Smith, and Weld 1998), albeit being the-
oretically relevant, do not address these challenges in prac-
tical domains. Using an adversarial model in the context of
plan improvement has also been discussed before in the liter-
ature, including in domains such as game-playing (Willmott
et al. 2001), and goal-driven approaches that use goal recog-
nition for adversaries to predict the goals of plans (Jiang,
Dong, and Zhao 2006; Pozanco et al. 2018). Unlike these ap-
proaches, Murphy identifies breakdown conditions that are

not only in the goals but also throughout the execution of
plan.

There are also adversarial models that consider cost, such
as the work in “Planning in the Presence of Cost functions
controlled by an adversary” (McMahan, Gordon, and Blum
2003). This work considers a scenario in which the adver-
sary controls the cost functions of a problem after a policy
is fixed in a Markov Decision Process. Murphy does not use
a Markov Decision Process and considers cost functions in
a problem to be fixed.

In this paper, we briefly describe Murphy, an existing
counter-planning and plan-critiquing framework (Goldman,
Kuter, and Schneider 2012) that was designed for generating
counter examples to show how plans might be broken via
the effects of uncontrolled actions and plans. We introduce
Hokage (Kuter and Goldman 2017) as the counter-example
generation engine in Murphy. Previously, Murphy leveraged
classical heuristic planners such as FF (Hoffmann 2001).
Hokage is a heuristic planner that uses the same theorem-
proving capabilities, such as axiomatic reasoning, numeric
reasoning, and expressional function calls as SHOP3, even
if it is a non-hierarchical planner.

We then describe our approach to extend the adversarial
reasoning capabilities in Murphy. This includes a skolem-
ization technique that allows counter-example generation to
perform delayed committed during the process. Unlike most
planners that eagerly bind variables, including lifted plan-
ners such as SHOP3 (Goldman and Kuter 2019), delayed
commitments allows Murphy to reason about uncertainty
and ambiguities in adversarial conditions and behaviors. We
also describe a method of probabilistic (cost-based) reason-
ing over adversarial conditions, providing meaningful com-
parisons of the value of a particular counterexample.

We conclude with a short walkthrough of the approach
in a suite of example use cases in an abstract collaborative
multi-agent domain. We discuss our future work directions
in this approach.

2 Background
We use the same definitions and notation for constant and
variable symbols, literals, ground atoms, state, planning op-
erators and actions, plans, planning problems and solutions
to those problems as in classical planning (Ghallab, Nau,
and Traverso 2004).



Murphy is a counter-planning and plan-critiquing frame-
work (Goldman, Kuter, and Schneider 2012), which aims to
provide feedback for plans on how they might fail, and can
be applied to plans made by humans or plans that are gener-
ated by planning systems. Murphy originally only supported
problems formulated with the Planning Domain Description
Language (PDDL) (Ghallab et al. 1998), but we have now
added support for problems formulated in the SHOP3 for-
malism (Nau et al. 2003), excluding the portions of the for-
malism that define HTN methods and HTN tasks.

We have adapted the subsequent definitions from (Gold-
man, Kuter, and Schneider 2012) for the sake of complete-
ness in this paper. A counterplanning problem for a solved
planning problem, <P, π> (We now refer to a counter plan-
ning problem with respect to the plan, π) is defined as
C = <P, π, L, c0, A>. L is a set containing positive literals
that is a superset of the literals of P as above, and c0 ⊇ s0
is an augmented initial state, a superset of the initial state.
We augment them to capture the state of agents outside the
control of the original planner. A = U ∪ O is the set of op-
erators of the counter planning problem, where U is a set of
uncontrolled operators modeled in the same way as the op-
erators O. The set of operators between U and O differ such
that U ∩O = ∅.

A counterexample for π wrt C is a sequence of uncon-
trolled actions, Π, that is an interleaving of π with some un-
controlled actions π–Π = π̂ | π̂– containing some control-
lable α such that Π = Π′αΠ′′ where Π′ is executable, but
α, result(Π′) is not executable (result(c0,Π

′) ̸|= pre(α)).
A solution for C is a counterexample if one exists, or the
empty set if one does not exist.

3 Approach
Murphy takes as input (1) a planning domain D, (2) a plan-
ning problem P , (3) a plan that is a solution for P , and (4)
a counter planning domain definition with uncontrolled ob-
jects and operators. The system translates these inputs into
a counter-planning problem specification and a constraint
counter planning domain. Informally, as described in (Gold-
man, Kuter, and Schneider 2012), Murphy translates a plan
into a “counter planning” problem, combining a representa-
tion of the plan with the definitions of a set of uncontrolled
actions. These uncontrolled actions could include the actions
of other agents in the environment, the weather, or even the
actions of controlled agents that conflict with each other.
The resulting translation creates a planning problem for a
classical planner to solve, for which the solution provided
is a counterexample to the initial plan. For more details on
Murphy see (Goldman, Kuter, and Schneider 2012). In the
subsequent subsections, we describe our recent extensions
to Murphy.

Cost of Disruptions
Originally, Murphy lacked depth in the comparison of coun-
terexamples. The intuitive comparison is to note that coun-
terexamples that break a plan beyond repair are “better” (for
the purposes of plan critiquing) than ones that require only a
slight change to the plan to accomplish the goal of the orig-
inal plan.

As a tool for making plans robust to adversarial effects, it
is in the interest for Murphy to work towards searching for
the most devastating break (for the original agent):

1. Take a counterexample and apply all of its actions but the
final action to the counterdomain, essentially creating the
state that occurs just before the action in the original plan,
with the assumptions behind the application of the next
action broken (The final action in a counterexample is a
pseudo-action that represents a break, but doesn’t alter
the world state except to add the goal predicate that the
classical planner is looking for)

2. Take all the predicates of that state and use it as the initial
state of a new planning problem.

3. Send the new planning problem to a classical planner
(currently only Hokage at the moment) with the original
goal being assigned as the goal of the new problem.

4. If the planner returns a new plan, then we find the dif-
ference in cost between the old plan and the new plan,
showing us how much cost the counterexample adds to
completion of the plan.

5. If no new plan is generated, then that means the coun-
terexample breaks the plan completely.

We could consider the cost in absolute terms, and rank
counterexample severity on the basis of cost alone, assum-
ing the most powerful adversary possible. For uncontrolled
actions that concern weather events, this sort of modeling
might be enough. However, it might also be interesting to
model an adversary as rational, and consider cost of the ad-
versary in executing the counterexample as well as the cost
that the disruption creates for the original planner. This be-
havior is well supported by SHOP3 cost functions, which
can call Lisp functions to calculate cost and use bound val-
ues of variables in these calls.

Hokage
Murphy in the past worked only with PDDL planners such as
FF (Hoffmann 2001) or FastDownward (Helmert 2006). We
have extended it for the Hokage planner (Kuter and Gold-
man 2017). Hokage is a planning algorithm that performs
lifted search for generating a solution plan. It uses a lifted
relaxed planning graph as a heuristic computation in a best-
first search algorithm.

Although Hokage is not a hierarchical planner, it is de-
signed and implemented on the theorem-proving facilities
of the SHOP3 planner (Goldman and Kuter 2019; Nau et al.
2003). As such, Hokage is capable of scoped axiomatic rea-
soning, numeric reasoning, and external function calls dur-
ing its heuristic search. This is important for generating ex-
pressive and practical counter examples for adversarial rea-
soning.

For example, axioms in SHOP3 are analogous to Horn
clauses in Prolog and derived predicates in some PDDL
planners (e.g., (Gerevini, Saetti, and Serina 2003)) and dur-
ing search in Hokage’s relaxed states, we can calculate de-
pendencies for axioms, linking the predicates that are re-
quired to be true for an axiom to be true to the action for
which the axiom is a precondition.



(:- (within-storm-radius ?truck ?storm-id)
(and

(at ?truck ?truck-loc-lat ?truck-loc-
long)

(storm-center ?storm-id ?center-loc-lat
?center-loc-long)

(assign ?distance-km
(/ (sqrt (+ (expt (- ’?truck-loc-lat

’?center-loc-lat) 2)
(expt (- ’?truck-loc-long

’?center-loc-long) 2))
)

111.0))
(eval (<= distance-km 5.0))))

The above axiom checks checks whether a truck is within
the radius of a particular storm, which we approximate as
a circle centered on the radius. It uses the first two por-
tions of the conjunction to bind values for the locations of
the truck and storm center, then uses assign to calculate
the euclidean distance between the two points, assigning the
output value to the variable ?distance-km (converting to
kilometers in an approximation of the earth as a sphere). It
uses that value in a call to eval to see that the distance is
within 5 kilometers.

For dependency tracking, we would track dependence of
the axiom in the relaxed planning graph by finding where
the subpredicates that are required to be true for it to be sat-
isfied are sourced. Notably, this axiom’s dependence can be
established without considering the eval subpredicate, as
its only variable distance-km is an output of computa-
tions with the variables for the location of the truck and the
storm, and therefore adds no new dependencies to the axiom.
This means that the eval predicate in this case requires no
additional linking of nodes.

Delayed Binding
As another extension, we have added a skolemization ap-
proach to Hokage. Skolemization here refers to the process
of removing existential quantifiers by elimination, taking
variables that come from existential qualifiers and replac-
ing their usage with skolem functions (Russell and Norvig
2009). Though we do not use existential qualifiers explic-
itly in our state models, we do some analysis on the states
to find means of establishing existential qualifiers in it. We
observed that in many cases, plans would have multiple en-
tities for which it was not important which entity was being
used, as long as the capability matched the requirements of
the plan, providing us an existential qualifier of the capabil-
ities we need.

This skolemization approach has applications for adver-
sarial reasoning, providing at least two benefits to Murphy:
(1) it defines equivalence classes of planning states for Hok-
age to search over and solution plans in those equivalence
classes that apply to fully-grounded states, and in doing so,
(2) it improves the speed of the heuristic search, by enabling
counter-example generation over such equivalence classes.

This suggests that Hokage can delay binding a variable
symbol in the relaxed planning heuristics; instead, the plan-
ner replaces the variables with a skolem function that speci-
fies the properties, as constraints, of the object (i.e., constant

symbol) that should be bound to that variable for a sound
plan. After Hokage generates a plan with skolem functions
in it as a solution, it post-processes the plan and generates
variable bindings according to the generated constraints dur-
ing heuristic search.

There are classes of planning problems in which such
post-processing will fail to generate a grounded plan due to
the constraints generated during the search, since the plan-
ner does not change its decisions on the fly during the search.
However, the search constraints can be given as input to the
planner to start another search episode for an incremental
counter-example generation. We discuss this more in apply-
ing this delayed binding to an example problem.

4 Example Use Cases
For our use cases, we have designed a small domain to
demonstrate the extensions to expressivity in our plans and
the generated counterexamples.

We call this domain Game of Dragons. It encompasses a
fantasy setup where-in we have dragons, elves and dwarves
as agents we control in our domain. The goal of our origi-
nal agents is often to destroy some number of targets, which
could be different castles. Castles might be destroyed by
dragons breathing fire on them, dragons dropping rocks on
them, or elves casting spells to destroy them. The agents we
control can navigate on a grid of cells, which are indexed
as integer pairs in our map. Dragons can fly, and therefore
are not restricted on which cells to navigate, but elves and
dwarves cannot fly. Elves can ride dragons, and provide ex-
tra capability to the dragon.

Arithmetic Evaluation
Having arbitrary arithmetic evaluation allows us to de-
scribe the grid world succinctly, without having to enu-
merate all the positions of the grid symbolically. Instead,
we have a single predicate (bounds ?min-x ?min-y
?max-x ?max-y) that describes the bounding box of
the grid (inclusive), and have operators for each direction
of movement. So for our domain, we have an operator
named walk-north, which takes as arguments the gob-
lin and the start location (making a head of !walk-north
?goblin ?start-loc).

The precondition of that action is the following.
(and

(bounds ?min-x ?min-y ?max-x ?max-y)
(goblin ?goblin)
(at ?goblin ?start-loc)
(assign ?end-loc (generate-coord-no-bounds

:north ’?start-loc))
(eval (coord-in-bounds ’?end-loc ’?min-x

’?min-y ’?max-x ’?max-y))
(not (blocked ?start-loc ?end-loc)))
And as a postcondition it adds an atom unifying with (at

?goblin ?end-loc) to the state, and deletes an atom
unifying with (at ?goblin ?start-loc).

In the above operator, we establish in a conjunction
that the goblin is at a particular location, binding that
location ?start-loc as a variable, and use that loca-
tion to generate the location above it that corresponds



to movement of 1 cell in the northern direction. The
call to generate the next coordinate is to a Lisp function
generate-coord-no-bounds, and we use assign to
assign the result of that call to the variable end-loc. In this
way, we have a means of generating the next location with-
out having to enumerate the adjacency relationships between
each location. When Hokage is planning with this operator,
it understands the locations numerically, and the power of
Lisp evaluation gives us tools to generate the next location
with that understanding.

Delayed Binding example
Suppose the initial state for a problem is described by the
following state atoms.

Listing 1: Initial State
((bounds 1 0 2 2)
(target target1 (2 1) :castle)
(target target2 (2 2) :castle)

(dragon dragon1)
(energy dragon1 6)
(available dragon1)
(at dragon1 (2 0))

(dragon dragon2)
(energy dragon2 6)
(available dragon2)
(at dragon2 (2 0))
(green-fire dragon2)

(dragon dragon3)
(energy dragon3 6)
(available dragon3)
(at dragon3 (2 0))
(green-fire dragon3))
And, at (1 1), a goblin lies in wait, with a bow and ar-

row also at (1 1) for them to pick up and fire at the dragon.
During the counterplanning problem setup process, our

approach decides to abstract away one of the dragons, as
they are both at the same location and have the same prop-
erties, producing a new state that delays the choice of which
dragon to pick in Listing 2.

Listing 2: Delayed binding version of the State
((bounds 1 0 2 2)
(target target2 (2 2) :castle)
(target target1 (2 1) :castle)
(dragon #:skol-dragon1151)
(at #:skol-dragon1151 (2 0))
(available #:skol-dragon1151)
(energy #:skol-dragon1151 6))
This state is passed first to Hokage to generate an input

plan in Listing 3, then the plan and initial state are passed to
Murphy for counterplanning, and the resulting counterplan
we get is on that abstracted version, as we see in Listing 3.

Listing 3: Plan on skolemized state
((!fly-north #:skol-dragon1151 (2 0))
(!burn-target #:skol-dragon1151 target1)
(!fly-north #:skol-dragon1151 (2 1))
(!burn-target #:skol-dragon1151 target2))

Listing 4: Counterexample
(((!pick-up-arrow goblin1 (1 1))

(!pick-up-bow goblin1 (1 1))
(!fly-north #:skol-dragon1151 (2 0))
(!burn-target #:skol-dragon1151 target1)
(!walk-east goblin1 (1 1))
(!fly-north #:skol-dragon1151 (2 1))
(!walk-north goblin1 (2 1))
(!fire-arrow-at-dragon goblin1 #:skol-

dragon1151 (2 2))
(!burn-target #:skol-dragon1151 target2))
...)
However, if we imagine that the first castle is shielded,

such that it requires a dragon with green-fire (dragon2 or
dragon3 fit the bill), we can expand the set of constraints
applied to the skolem constant, adding (green-fire
#:skol-dragon1151) to our starting state so that the
search will return a result for the initial plan.

5 Discussion
There are a few directions we are looking at for future work
and improvements on counter-planning with Murphy.

Local Minima in Heuristic
During evaluation of Hokage, we noticed that the relaxed
planning graph heuristic could get “stuck” in local minima in
the search. In our preliminary experiments this tended to ap-
pear when there were multiple serializable subgoals that had
to be accomplished to make the main goal true. Actions that
took the state closer to accomplishing a particular subgoal
would have a higher heuristic value (where lower heuristic
values are preferred) than actions that took the state to a spot
that was the closest to all the subgoals. In FF, these situations
would be handled by its fallback to best-first breadth first
search (Hoffmann 2001), but this approach is practically-
infeasible for our possibly infinitely sized domains.

Critiquing of HTN generated plans
The approach Murphy adopts is currently structured for clas-
sical planning, but we believe there might be applications
in HTN planning as well. While conventional HTNs do not
have preconditions or effects on nonprimitive tasks (Gold-
man and Kuter 2019), the plan trees that SHOP3 generates
could be critiqued in the same way Murphy critiques pre-
conditions in classical planning plans.

Axioms for expanding skolemization function
Because Hokage supports axioms, we are considering using
axioms as a means of expanding skolemization functionality.
The skolemization process attempts to interpret a collection
of entities as a singular one and encoding that singular entity
with the shared properties of the collection. Axioms could
be a means of encoding different relevant properties, and we
are considering using Axioms (which are essentially Horn
Clauses) to reason about skolem constants in our models.
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