
Compiling HTN Plan Verification Problems into HTN Planning Problems
Daniel Höller1, Julia Wichlacz1, Pascal Bercher2, and Gregor Behnke3,4

1Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2The Australian National University, Canberra, Australia

3University of Freiburg, Freiburg, Germany
4University of Amsterdam, ILLC, The Netherlands

hoeller@cs.uni-saarland.de, wichlacz@cs.uni-saarland.de, pascal.bercher@anu.edu.au, g.behnke@uva.nl

• In HTN planning, the decomposition steps applied to find a so-
lution are usually not part of the solution

→ The solution is a sequence (partially ordered set) of actions

• This makes verifying whether a solution returned by a planner
is correct a hard task (up to NP-hard)
•Given certain mappings and the steps, it becomes polynomial
→ E.g. for the IPC, systems needed to provide them

•However, they are often not needed and tracking them is some-
times (technically) complicated
• Sometimes they are even not available at all (e.g. after post-

processing, or in compilation-based planning systems)

Motivation

Approaches from the literature:
• Translation to propositional logic (Behnke et al. 2017)
• Based on parsing (see e.g. Barták et al. 2018)

Plan Verification – Related Work

We present a compilation to HTN planning
•We compile the plan verification problem into an HTN planning

problem that has a solution if and only if the solution is correct
•We use HTN planning systems to solve the compiled problem
• The used planners return the decomposition steps
→Witness for correctness

Plan Verification – Approach

Given in the problem definition:
•HTN planning problem p

• sequence of actions (a1a2 . . .an)

Task: Decide whether there is a solution (TS,≺S,αS)

• for an ordering (i1i2 . . . in) of task identifiers
• it holds that (αS(i1) . . .αS(in)) = (a1 . . .an)

• Based on the original planning problem. . .
• . . . we generate a problem in which exactly the given sequence

is executable

Plan Verification

Figure 1: Plan verification

Step 1:
•Copy the actions in the solution to verify: a→ a′,a′′

• a′ gets new preconditions and effects, it can only be placed at
the respective position in the solution
• All actions have to be in the plan

Step 2 is illustrated in Figure 3.

Plan Verification – Compilation

s0
l0
. . . a′1

l0
. . .

¬l0
l1
. . .

a′2
l1
. . .

¬l1
l2
. . .

. . . a′m
lm−1
. . .

¬lm−1
lm
. . .

g
lm
. . .

Figure 2: Prefix Compilation

Compiling HTN Plan Verification Problems into HTN Planning Problems Daniel Höller et al., Saarland University

Translation (3)

Plan to verify: ab

Set of methods:

a

b

→

→

ta

tb

ata

a′ta

b
tb

b′tb

. . .

6

Figure 3: Example for method transformation (plan to verify: abab)

•We use two off-the-shelf planning systems from the PANDA
framework to solve the resulting problems
• They return a witness for the decomposition process
• This allows to check of correctness in P

•We compare our approach against SAT-based and parsing-
based systems from the literature

Evaluation – Systems

•We created a benchmark set based on the 2020 IPC models
•We included plans generated by the participants of the IPC and

from systems from the PANDA framework
• To also include non-solutions, we included incorrect plans re-

turned by non-final versions of the IPC participants (before the
debugging process)
• Problem for verification: method preconditions

Evaluation – Benchmark Set

• State-based preconditions of methods are very common in
HTN planning
• To make their support as simple as possible for planners, the

HDDL standard defines its semantics via a compilation
•However, this leads to problems for verifiers (see Figure 4)
• For totally ordered problems, this is not a problem

Method Preconditions

. . .

method prec. p

. . .

action prec. p

unordered
tasks

a1 a2 a3

. . .

. . .
p

Where is p checked?

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

Figure 4: Method preconditions

• SAT-based and parsing-based approaches do not (fully) sup-
port method preconditions
• For our approach, they are not a problem: model parts con-

cerned with the method preconditions just need to be ignored
•However, this forms a problem for the evaluation
•We created a second benchmark set by removing the method

preconditions from all models
• Since this might change the characteristics of the problems, we

ran all verification systems on both sets

Method Preconditions

•Compilation with progression search-based planner performs
best on the original benchmark set
• SAT-based planner has problems showing unsolvability
•Coverage of all systems drops on the models where method

preconditions have been removed

Results

Compiling HTN Plan Verification Problems into HTN Planning Problems D. Höller, J. Wichlacz, P. Bercher, G. Behnke

Results

Inst.
Compilation

Parsing SAT
Progression SAT

TO
Valid 10961 10881 (99.27) 9757 (89.02) 9158 (83.55) not supported

Invalid 1406 1364 (97.01) 727 (51.71) 1301 (92.53) not supported

PO
Valid 1211 1088 (89.84) 1198 (98.93) not supported not supported

Invalid 138 129 (93.48) 64 (46.38) not supported not supported

TO Valid 11304 9679 (85.62) 8986 (79.49) 7889 (69.79) 1036 (9.16)
No M.P. Invalid 1063 898 (84.48) 406 (38.19) 915 (86.08) 684 (64.35)

PO Valid 1243 1103 (88.74) 1212 (97.51) 973 (78.28) 897 (72.16)
No M.P. Invalid 106 98 (92.45) 57 (53.77) 106 (100.00) 103 (97.17)

10

Figure 5: Coverage results

100

101

102

0% 25% 50% 75% 100%

Systems:
Comp. Pro Comp. SAT Parsing

Figure 6: Runtime against solved instances (setting: valid solu-
tions, TO with method preconditions)

•We have introduced a compilation-based approach to HTN
plan verification
•We used off-the-shelf planners to solve the problems resulting

from the compilation
•Our planners return the information enabling verification in P

•We introduced a novel benchmark set for plan verification
based on the models from the 2020 IPC
•Our system is the only one supporting all language features

used in the IPC
•Our system outperforms the systems from the literature

Conclusion


